摘要:
A semiconductor device in which a strained-layer of super-lattice composed of two or more group II-IV semiconductors grown on an epitaxial growth layer formed on a surface of a semiconductor substrate. Since the strained-layer of super-lattice composed of two or more group II-VI semiconductors is present in the heterojunction of the heterostructure, it is possible to form a favorable heterostructure seminconductor layer, inhibiting the adverse effects of lattice mismatch.
摘要:
A nitride-based semiconductor light-emitting element includes an n-GaN layer 102, a p-GaN layer 107, and a GaN/InGaN multi-quantum well active layer 105, which is interposed between the n- and p-GaN layers 102 and 107. The GaN/InGaN multi-quantum well active layer 105 is an m-plane semiconductor layer, which includes an InxGa1-xN (where 0
摘要翻译:氮化物系半导体发光元件包括n-GaN层102,p-GaN层107和GaN / InGaN多量子阱有源层105,其夹在n-p + GaN层102之间 GaN / InGaN多量子阱有源层105是m面半导体层,其包括厚度为6nm以上的In x Ga 1-x N(其中0
摘要:
Provided is a light-emitting device including: a nitride semiconductor light-emitting element (402) which radiates optically polarized light; and a light emission control layer (404) which covers the light emission surface of the nitride semiconductor light-emitting element (402) and which contains a resin and non-fluorescent particles dispersed in the resin, in which the light emission control layer (404) contains the non-fluorescent particles at a proportion of 0.01 vol % or more and 10 vol % or less, and the non-fluorescent particles have a diameter of 30 nm or more and 150 nm or less.
摘要:
A semiconductor light-emitting element according to the present invention includes: an n-type nitride semiconductor layer 21; a p-type nitride semiconductor layer 23; an active layer region 22 which includes an m plane nitride semiconductor layer and which is interposed between the n-type nitride semiconductor layer and the p-type nitride semiconductor layer; an n-type electrode 30 which is electrically connected to the n-type nitride semiconductor layer; a p-type electrode 40 which is electrically connected to the p-type nitride semiconductor layer; a light-emitting face, through which polarized light that has been produced in the active layer region is extracted out of this element; and a striped structure 50 which is provided for the light-emitting face and which has a plurality of projections that run substantially parallel to the a-axis direction of the m plane nitride semiconductor layer.
摘要:
A nitride-based semiconductor light-emitting device 100 includes: a GaN substrate 10 with an m-plane surface 12; a semiconductor multilayer structure 20 provided on the m-plane surface 12 of the GaN substrate 10; and an electrode 30 provided on the semiconductor multilayer structure 20. The electrode 30 includes a Zn layer 32 and an Ag layer 34 provided on the Zn layer 32. The Zn layer 32 is in contact with a surface of a p-type semiconductor region of the semiconductor multilayer structure 20.
摘要:
The light-emitting diode element of this invention includes: an n-type GaN substrate (7), of which the principal surface (7a) is an m plane; and a multilayer structure on the principal surface (7a) of the substrate (7), which includes an n-type semiconductor layer (2), an active layer (3) on a first region (2a) of the upper surface of the n-type semiconductor layer (2), a p-type semiconductor layer (4), an anode electrode layer (5), and a cathode electrode layer (6) on a second region (2b) of the upper surface of the n-type semiconductor layer (2). These layers (2, 3, 4) have all been grown epitaxially through an m-plane growth. The n-type dopant concentration in the substrate (7) and n-type semiconductor layer (2) is 1×1018 cm−3 or less. When viewed perpendicularly to the principal surface (7a), a gap of 4 μm or less is left between the anode and cathode electrode layers (5, 6) and the anode electrode layer (5) is arranged at a distance of 45 μm or less from an edge of the cathode electrode layer (6) that faces the anode electrode layer (5).
摘要:
A nitride-based semiconductor device includes: a nitride-based semiconductor multilayer structure including a p-type semiconductor region, a surface of the p-type semiconductor region being an m-plane; and an electrode that is arranged on the p-type semiconductor region, wherein the p-type semiconductor region is made of an AlxGayInzN semiconductor (where x+y+z=1, x≧0, y≧0, and z≧0), and the electrode contains Mg, Zn and Ag.
摘要翻译:氮化物类半导体器件包括:包含p型半导体区域的氮化物基半导体多层结构,p型半导体区域的表面是m面; 和配置在p型半导体区域上的电极,其中p型半导体区域由Al x Ga y In z N半导体(其中x + y + z = 1,x≥0,y≥0,z≥0) ,电极含有Mg,Zn和Ag。
摘要:
The present invention is a method of manufacturing a gallium nitride-based compound semiconductor, including growing an m-plane InGaN layer whose emission peak wavelength is not less than 500 nm by metalorganic chemical vapor deposition. Firstly, step (A) of heating a substrate in a reactor is performed. Then, step (B) of supplying into the reactor a gas which contains an In source gas, a Ga source gas, and a N source gas and growing an m-plane InGaN layer of an InxGa1-xN crystal on the substrate at a growth temperature from 700° C. to 775° C. is performed. In step (B), the growth rate of the m-plane InGaN layer is set in a range from 4.5 nm/min to 10 nm/min.
摘要翻译:本发明是一种制造氮化镓系化合物半导体的方法,包括通过金属有机化学气相沉积生长发光峰值波长不小于500nm的m面InGaN层。 首先,进行在反应器中加热基板的工序(A)。 然后,向反应器供给包含In源气体,Ga源气体和N源气体的气体的步骤(B),并在生长中在衬底上生长In x Ga 1-x N晶体的m面InGaN层 进行从700℃到775℃的温度。 在步骤(B)中,将m面InGaN层的生长速度设定在4.5nm / min〜10nm / min的范围内。
摘要:
A nitride-based semiconductor light-emitting device 100 includes: a GaN substrate 10 with an m-plane surface 12; a semiconductor multilayer structure 20 provided on the m-plane surface 12 of the GaN substrate 10; and an electrode 30 provided on the semiconductor multilayer structure 20. The electrode 30 includes an Mg layer 32 and an Ag layer 34 provided on the Mg layer 32. The Mg layer 32 is in contact with a surface of a p-type semiconductor region of the semiconductor multilayer structure 20.
摘要:
A nitride-based semiconductor light-emitting device 100 includes a GaN substrate 10, of which the principal surface is an m-plane 12, a semiconductor multilayer structure 20 that has been formed on the m-plane 12 of the GaN-based substrate 10, and an electrode 30 arranged on the semiconductor multilayer structure 20. The electrode 30 includes an Mg alloy layer 32 which is formed of Mg and a metal selected from a group consisting of Pt, Mo, and Pd. The Mg alloy layer 32 is in contact with a surface of a p-type semiconductor region of the semiconductor multilayer structure 20.