Abstract:
Technology for an apparatus of a user equipment (UE) configured to select spectrum resources in a vehicle to vehicle (V2V) communication system is disclosed. It relies on the established mechanisms for device-todevice, D2D direct mode communication well-known in the context of Proximity Services in a 3GPP LTE communications system. The UE can calculate a received energy in a physical sidelink shared channel (PSSCH) over a sensing period for a portion of one or more sub-channels over selected subframes in a resource pool, by means of measurements of Received Signal Strength Indication, RSSI, of other D2D sidelink channel communications. The UE can identify the one or more sub-channels over the selected subframes that has a measured energy level greater than a threshold value to determine a channel congestion fraction (CCF) comprising a fraction of the resources that exceed the threshold value, reflecting a resource utilization. The UE can send the channel congestion fraction (CCF) to an upper layer of the UE to enable resource reselection for the UE based on the fraction of the resources that exceed the threshold value. The configuration of D2D retransmission parameters is in particular addressed, according to the measured congestion or interference. The UE may as well transmit the measured CCF to a base station evolved node B, eNB, which may accordingly reconfigure the UE's sidelink channel communication transmission parameters.
Abstract:
An apparatus and method for managing interference to facilitate allocation of a dynamic uplink and downlink configuration are disclosed herein. Determining whether a first cell causes interference less than a pre-determined threshold level to one or more neighboring cells or whether flexible subframes of radio frames associated with the one or more neighboring cells operate as downlink subframes. In response to the determining condition being met, allocating a first flexible subframe of a first radio frame associated with the first cell to operate as a downlink subframe at normal transmit power level. In response to the determining condition not being met, allocating the first flexible subframe of the first radio frame associated with the first cell as one of a downlink subframe operating in a reduced transmit power level or as an uplink subframe.
Abstract:
An apparatus and method for managing interference to facilitate allocation of a dynamic uplink and downlink configuration are disclosed herein. Determining whether a first cell causes interference less than a pre-determined threshold level to one or more neighboring cells or whether flexible subframes of radio frames associated with the one or more neighboring cells operate as downlink subframes. In response to the determining condition being met, allocating a first flexible subframe of a first radio frame associated with the first cell to operate as a downlink subframe at normal transmit power level. In response to the determining condition not being met, allocating the first flexible subframe of the first radio frame associated with the first cell as one of a downlink subframe operating in a reduced transmit power level or as an uplink subframe.
Abstract:
Technology for dynamically reconfiguring an uplink-downlink (UL-DL) time-division duplexing (TDD) configuration is disclosed. In an example, a user equipment (UE) can have computer circuitry configured to: Receive a UL-DL reconfiguration indicator from a node to dynamically reconfigure a flexible subframe (FIexSF) to a different UL-DL transmission direction from a semi-static UL-DL configuration; apply a DL channel timing based on a DL favored UL-DL configuration; and apply a UL channel timing based on a UL favored UL-DL configuration. The FIexSF can be capable of changing an UL-DL transmission direction. The DL favored UL-DL configuration can include more DL subframes than a semi-static UL-DL TDD configuration for the UE, and the UL favored UL-DL configuration includes more UL subframes than a semi-static UL-DL TDD configuration for the UE.
Abstract:
A computer-readable storage medium stores instructions to configure a UE for NR positioning in a 5G NR network, and to cause the UE to perform operations including decoding configuration signaling received from a location and management function (LMF) node of the 5GNR network. The configuration signaling includes a positioning reference signal (PRS) measurement configuration. A number of measurement samples per a successful measurement reporting can be indicated by the PRS measurement configuration which depends on a specific conditions (e.g., PRS bandwidth, propagation channel, and SINR). A PRS received from a base station is decoded. Downlink PRS (DL-PRS) positioning measurements is performed based on the PRS. The DL-PRS positioning measurements are encoded for transmission to the LMF node using the number of measurement samples.
Abstract:
An apparatus and system for use of a pre-configured gap are described. The network signals a preconfigured gap via radio resource control (RRC) signaling and follows a bandwidth part (BWP) to activate/deactivate the gap upon BWP switching. The RRC signaling indicates whether a measurement gap is a pre-configured gap. Pre-configured frequency range 1 (FR1) and FR2 gaps are able to be configured simultaneously using RRC signaling. Similarly, legacy gaps and pre-configured gaps are able to be configured simultaneously using RRC signaling. The pre-configured gap may be autonomously or implicitly activated triggered by downlink control information (DCI) or timer-based BWP switching—in some cases under predetermined network conditions.
Abstract:
An apparatus and system for setting an uplink timing advance (TA) for a non-terrestrial network (NTN) user equipment (UE) are described. The NTN UE estimates and updates a UE-specific TA value each period. The update is based on Global Navigation Satellite System (GNSS) positions and satellite ephemeris information. The NTN UE adjusts the UE-specific TA gradually, between a predetermined minimum and maximum aggregate adjustment rate.
Abstract:
In a fifth-generation (5G) new radio (NR) network, a generation node B (gNB) determines parameters for a Network Controlled Small Gap (NCSG) to reduce and/or eliminate interruptions at a user equipment (UE) for use when the UE is transitioning to a new target frequency for measurements or when the UE is switching or transiting between bandwidth parts (BWPs). The NCSG may be configured to align with one or more fundamental parameters of a legacy measurement gap (MG) pattern to reduce the interruptions.
Abstract:
Various embodiments herein provide techniques for user equipment (UE) behavior and delay requirements in case of spatial relation information change for an uplink signal, such as a sounding reference signal (SRS), a physical uplink control channel (PUCCH), and/or a physical uplink shared channel (PUSCH). In one example, the UE determines a delay time period from receipt of a message that indicates spatial relation information for uplink transmission. The delay time period includes a decoding time period and a UE processing and preparation time period. The UE transmits an uplink signal using the indicated spatial relation information after expiration of the delay time period.
Abstract:
Various embodiments herein provide techniques for positioning measurements in a wireless cellular network when a user equipment (UE) is in a radio resource control (RRC) inactive state or a RRC idle state. For example, the UE may transmit a sounding reference signal (SRS) for positioning measurements while the UE is in the RRC inactive state or RRC idle state. The SRS may be a semi-persistent SRS and may be transmitted after an activation delay from receipt of a message (e.g., medium access control (MAC) control element (CE)) that activates the SRS. Additionally, or alternatively, the UE may perform a positioning reference signal (PRS) measurement while in the RRC inactive state or the RRC idle state. The PRS measurement may have a reduced number of measurement samples. Other embodiments may be described and claimed.