Abstract:
Cooling methods are provided which include providing a heat sink having a housing with a compartment, a coolant inlet, and a coolant outlet. The housing is configured for a coolant to flow from the coolant inlet through the compartment to the coolant outlet, wherein the coolant is transferring heat extracted from one or more electronic components. The heat sink further includes one or more heat pipes having a first portion disposed within the compartment of the housing and a second portion disposed outside the housing. The heat pipe(s) is configured to extract heat from the coolant flowing through the compartment, and to transfer the extracted heat to the second portion disposed outside the housing. The second portion outside the housing is disposed to facilitate conducting the extracted heat into the ground.
Abstract:
An automated multi-fluid cooling system and method are provided for cooling an electronic component(s). The cooling system includes a coolant loop, a coolant tank, multiple valves, and a controller. The coolant loop is at least partially exposed to outdoor ambient air temperature(s) during normal operation, and the coolant tank includes first and second reservoirs containing first and second fluids, respectively. The first fluid freezes at a lower temperature than the second, the second fluid has superior cooling properties compared with the first, and the two fluids are soluble. The multiple valves are controllable to selectively couple the first or second fluid into the coolant in the coolant loop, wherein the coolant includes at least the second fluid. The controller automatically controls the valves to vary first fluid concentration level in the coolant loop based on historical, current, or anticipated outdoor air ambient temperature(s) for a time of year.
Abstract:
A method is provided which includes providing a coolant-conditioning unit which includes a facility coolant path, having a facility coolant flow control valve, and a system coolant path accommodating a system coolant, and having a bypass line with a system coolant bypass valve. A heat exchanger is coupled to the facility and system coolant paths to facilitate transfer of heat from the system coolant to facility coolant in the facility coolant path, and the bypass line is disposed in the system coolant path in parallel with the heat exchanger. A controller automatically controls a regulation position of the coolant bypass valve and a regulation position of the facility coolant flow control valve based on a temperature of the system coolant, and automatically adjusts the regulation position of the system coolant bypass valve to facilitate maintaining the facility coolant flow control valve at or above a specified, partially open, minimum regulation position.
Abstract:
Dehumidifying cooling apparatus and method are provided for an electronics rack. The apparatus includes an air-to-liquid heat exchanger disposed at an air inlet or outlet side of the rack, wherein air flows through the rack from the air inlet to the air outlet side. The heat exchanger is positioned for air passing through the electronics rack to pass across the heat exchanger, and is in fluid communication with a coolant loop for passing coolant therethrough at a temperature below a dew point temperature of the air passing across the heat exchanger so that air passing across the heat exchanger is dehumidified and cooled. A condensate collector, disposed below the heat exchanger, collects liquid condensate from the dehumidifying of air passing through the electronics rack, wherein the heat exchanger includes a plurality of sloped surfaces configured to facilitate drainage of liquid condensate from the heat exchanger to the condensate collector.
Abstract:
Methods and coolant distribution systems are provided for automated coolant flow control for, for instance, facilitating cooling of multiple different electronic systems. The methods include, for instance, automatically controlling coolant flow to a plurality of coolant circuits, and for a coolant circuit i of the coolant circuits: automatically determining the heat load transferred to coolant flowing through coolant circuit i, and automatically controlling coolant flow through coolant circuit i based on the determined heat load transferred to the coolant. The different coolant circuits may have the same or different coolant flow impedances, and flow through the different coolant circuits may be controlled using different heat load-to-coolant ranges for the different circuits.
Abstract:
A heat sink, and cooled electronic structure and cooled electronics apparatus utilizing the heat sink are provided. The heat sink is fabricated of a thermally conductive structure which includes one or more coolant-carrying channels coupled to facilitate the flow of coolant through the coolant-carrying channel(s). The heat sink further includes a membrane associated with the coolant-carrying channel(s). The membrane includes at least one vapor-permeable region, which overlies a portion of the coolant-carrying channel(s) and facilitates removal of vapor from the coolant-carrying channel(s), and at least one orifice coupled to inject coolant onto at least one surface of the coolant-carrying channel(s) intermediate opposite ends of the channel(s).
Abstract:
A heat sink, and cooled electronic structure and cooled electronics apparatus utilizing the heat sink are provided. The heat sink is fabricated of a thermally conductive structure which includes one or more coolant-carrying channels coupled to facilitate the flow of coolant through the coolant-carrying channel(s). The heat sink further includes a membrane associated with the coolant-carrying channel(s). The membrane includes at least one vapor-permeable region, which overlies a portion of the coolant-carrying channel(s) and facilitates removal of vapor from the coolant-carrying channel(s), and at least one orifice coupled to inject coolant onto at least one surface of the coolant-carrying channel(s) intermediate opposite ends of the channel(s).
Abstract:
Cooling apparatuses and methods are provided for facilitating pumped immersion-cooling of electronic components. The cooling apparatus includes a housing forming a compartment about one or more components, a supply manifold, a return manifold, and a coolant loop coupling in fluid communication the supply and return manifolds and the housing. Coolant flowing through the coolant loop flows through the compartment of the housing and at least partially immersion-cools the component(s) by flow boiling. A pump facilitates circulation of coolant within the loop, and a coolant bypass line is coupled between the supply and return manifolds. The return manifold includes a mixed-phase manifold section, and the bypass line provides coolant from the supply manifold directly to the mixed-phase manifold section. Coolant flows from the coolant bypass line into the mixed-phase manifold section in a direction counter to the direction of any coolant vapor flow within that manifold section.
Abstract:
A method is provided which includes providing a multi-rack assembly having adjacent first and second electronics racks, each being at least partially air-cooled, and an air-to-liquid heat exchanger associated with the first rack for cooling at least a portion of air passing through the first rack. The heat exchanger, which is disposed at the air inlet or air outlet side of the first rack and is coupled in fluid communication with a coolant loop to receive coolant from the loop and exhaust coolant to the loop, transfers heat from air passing thereacross to coolant passing therethrough. The assembly also includes a cooling unit, associated with the first rack and cooling coolant in the coolant loop, and an airflow director associated with the second rack and facilitating ducting at least a portion of air passing through the second rack to also pass across the heat exchanger associated with the first rack.
Abstract:
Cooling apparatuses, cooled electronic modules and methods of fabrication are provided for fluid immersion-cooling of an electronic component(s). The method includes, for instance: securing a housing about an electronic component to be cooled, the housing at least partially surrounding and forming a compartment about the electronic component to be cooled; disposing a fluid within the compartment, wherein the electronic component to be cooled is at least partially immersed within the fluid, and wherein the fluid comprises water; and providing a deionizing structure within the compartment, the deionizing structure comprising deionizing material, the deionizing material ensuring deionization of the fluid within the compartment, wherein the deionizing structure is configured to accommodate boiling of the fluid within the compartment.