Abstract:
Embodiments are directed to a semiconductor device. The semiconductor device includes a first semiconductor fin formed opposite a surface of a first active region of a substrate. The semiconductor device further includes a second semiconductor fin formed opposite a surface of a second active region of the substrate. The semiconductor device further includes a self-aligned buried contact formed over portions of the first active region and the second active region and between the first semiconductor fin and the second semiconductor fin.
Abstract:
A method for forming conductive structures for a semiconductor device includes depositing a reflow liner on walls of trenches formed in a dielectric layer and depositing a reflow material on the reflow liner. The reflow material is reflowed to collect in a lower portion of the trenches. The depositing and the reflowing steps are repeated until the trenches are aggregately filled with the reflow material. The reflow material is planarized to form conductive structures in the trenches.
Abstract:
A transistor device includes a gate structure positioned above a semiconductor substrate, and spaced-apart sidewall spacers positioned above the substrate and adjacent sidewalls of the gate structure. An internal sidewall surface of each of the spaced-apart sidewall spacers includes an upper sidewall surface portion and a lower sidewall surface portion positioned between the upper sidewall surface portion and a surface of the substrate, wherein a first lateral width between first upper ends of the upper sidewall surface portions is greater than a second lateral width between second upper ends of the lower sidewall surface portions.
Abstract:
An interconnect structure includes an insulator stack on an upper surface of a semiconductor substrate. The insulator stack includes a first insulator layer having at least one semiconductor device embedded therein and an etch stop layer interposed between the first insulator layer and a second insulator layer. At least one electrically conductive local contact extends through each of the second insulator layer, etch stop layer and, first insulator layer to contact the at least one semiconductor device. The interconnect structure further includes at least one first layer contact element disposed on the etch stop layer and against the at least one conductive local contact.
Abstract:
A technique for a multiple voltage threshold transistor structure is provided. A narrow channel and long channel are formed on a fin. An epitaxial layer is formed on the fin, and an interlayer dielectric layer is formed on the epitaxial layer. Spacers on the fin define the narrow channel and the long channel. A high-k dielectric material is deposited in the narrow and long channels. A metal layer is deposited on the high-k dielectric material in the narrow and long channels. A height of the high-k dielectric material in the narrow channel is recessed. The metal layer is removed from the narrow and long channels. A work function metal is deposited in the narrow and long channels. A gate conduction metal is deposited to fill the narrow channel and long channel. A capping layer is deposited on the top surface of the structure.
Abstract:
An aspect of the invention includes a freestanding spacer having a sub-lithographic dimension for a sidewall image transfer process. The freestanding spacer comprises: a first spacer layer having a first portion disposed on the semiconductor layer; and a second spacer layer having a first surface disposed on the first portion of the first spacer layer, wherein the first spacer layer has a first dielectric constant and the second spacer layer has a second dielectric constant, the first dielectric constant being greater than the second dielectric constant, and wherein a dimension of each of the first and second spacer layers collectively determine the sub-lithographic lateral dimension of the freestanding spacer.
Abstract:
A technique for a multiple voltage threshold transistor structure is provided. A narrow channel and long channel are formed on a fin. An epitaxial layer is formed on the fin, and an interlayer dielectric layer is formed on the epitaxial layer. Spacers on the fin define the narrow channel and the long channel. A high-k dielectric material is deposited in the narrow and long channels. A metal layer is deposited on the high-k dielectric material in the narrow and long channels. A height of the high-k dielectric material in the narrow channel is recessed. The metal layer is removed from the narrow and long channels. A work function metal is deposited in the narrow and long channels. A gate conduction metal is deposited to fill the narrow channel and long channel. A capping layer is deposited on the top surface of the structure.
Abstract:
One method disclosed herein includes, among other things, forming a gate cap layer above a recessed final gate structure and above recessed sidewall spacers, forming a recessed trench silicide region that is conductively coupled to the first source/drain region, the recessed trench silicide region having an upper surface that is positioned at a level that is below the recessed upper surface of the sidewall spacers, forming a combined contact opening in at least one layer of material that exposes a conductive portion of the recessed final gate structure and a portion of the trench silicide region, and forming a combined gate and source/drain contact structure in the combined contact opening.
Abstract:
After formation of a semiconductor device on a semiconductor-on-insulator (SOI) layer, a first dielectric layer is formed over a recessed top surface of a shallow trench isolation structure. A second dielectric layer that can be etched selective to the first dielectric layer is deposited over the first dielectric layer. A contact via hole for a device component located in or on a top semiconductor layer is formed by an etch. During the etch, the second dielectric layer is removed selective to the first dielectric layer, thereby limiting overetch into the first dielectric layer. Due to the etch selectivity, a sufficient amount of the first dielectric layer is present between the bottom of the contact via hole and a bottom semiconductor layer, thus providing electrical isolation for the ETSOI device from the bottom semiconductor layer.
Abstract:
Gate to contact shorts are reduced by forming dielectric caps in replaced gate structures. Embodiments include forming a replaced gate structure on a substrate, the replaced gate structure including an ILD having a cavity, a first metal on a top surface of the ILD and lining the cavity, and a second metal on the first metal and filling the cavity, planarizing the first and second metals, forming an oxide on the second metal, removing the oxide, recessing the first and second metals in the cavity, forming a recess, and filling the recess with a dielectric material. Embodiments further include dielectric caps having vertical sidewalls, a trapezoidal shape, a T-shape, or a Y-shape.