Abstract:
A method for forming a power semiconductor device is provided. The method includes: providing a semiconductor wafer grown by a Czochralski process and having a first side; forming an n-type substrate doping layer in the semiconductor wafer at the first side, the substrate doping layer having a doping concentration of at least 1017/cm3; and forming an epitaxy layer on the first side of the semiconductor wafer after forming the n-type substrate doping layer.
Abstract:
A semiconductor device includes a semiconductor body with a first surface, a contact electrode arranged on the first surface, and a passivation layer on the first surface adjacent the contact electrode. The passivation layer includes a layer stack with an amorphous semi-insulating layer on the first surface, a first nitride layer on the amorphous semi-insulating layer, and a second nitride layer on the first nitride layer.
Abstract:
A semiconductor device includes a single crystalline semiconductor body with a first surface and a second surface parallel to the first surface. The semiconductor body contains chalcogen atoms and a background doping of pnictogen and/or hydrogen atoms. A concentration of the chalcogen atoms is at least 1E12 cm−3. A ratio of the chalcogen atoms to the atoms of the background doping is in a range from 1:9 to 9:1.
Abstract:
A method for manufacturing a semiconductor device includes providing a semiconductor substrate having first and second sides, laterally spaced semiconductor devices integrated into the semiconductor substrate, and a drift region of a first conductivity type. Trenches are formed in the semiconductor substrate at the first side of the semiconductor substrate between laterally adjacent semiconductor devices, each of the trenches having two sidewalls and a bottom. First doping zones of a second conductivity type are formed in the semiconductor substrate at least along the sidewalls of the trenches. The first doping zones form pn-junctions with the drift region. Second doping zones of the first conductivity type are formed in the semiconductor substrate at least along a part of the bottom of the trenches. The second doping zones adjoin the drift region. The semiconductor substrate is cut along the second doping zones in the trenches to separate the semiconductor devices.
Abstract:
A power semiconductor device includes a semiconductor body, having an active zone and a high voltage peripheral zone laterally adjacent to each other, the high voltage peripheral zone laterally surrounding the active zone. The device further includes a metallization layer on a front surface of the semiconductor body and connected to the active zone, a first barrier layer, comprising a high-melting metal or a high-melting alloy, between the active zone and the metallization layer, and a second barrier layer covering at least a part of the peripheral zone, the second barrier layer comprising an amorphous semi-isolating material. The first barrier layer and the second barrier layer partially overlap and form an overlap zone. The overlap zone extends over an entire circumference of the active zone. A method for producing such a power semiconductor device is also provided.
Abstract:
A semiconductor device has a semiconductor body including opposing bottom and top sides, a surface surrounding the semiconductor body, an active semiconductor region formed in the semiconductor body, an edge region surrounding the active semiconductor region, a first semiconductor zone of a first conduction type formed in the edge region, an edge termination structure formed in the edge region at the top side, and a shielding structure arranged on that side of the edge termination structure facing away from the bottom side. The shielding structure has a number of N1≧2 first segments and a number of N2≧1 second segments. Each of the first segments is electrically connected to each of the other first segments and to each of the second segments, and each of the second segments has an electric resistivity higher than an electric resistivity of each of the first segments.
Abstract:
According to various embodiments, a semiconductor wafer may include: a semiconductor body including an integrated circuit structure; and at least one tetrahedral amorphous carbon layer formed at least one of over or in the integrated circuit structure, the at least one tetrahedral amorphous carbon layer may include a substance amount fraction of sp3-hybridized carbon of larger than approximately 0.4 and a substance amount fraction of hydrogen smaller than approximately 0.1.
Abstract:
A semiconductor body has a first side, second side, lateral edge, active area, edge termination between the active area and the lateral edge, and drift region of a first conductivity type. The edge termination includes a step formed in the semiconductor body between the first side and the lateral edge. The step includes a lateral surface extending up to the first side and a bottom surface extending up to the lateral edge. A first doping zone of a second conductivity type is formed in the semiconductor body along the lateral surface of the step and forms a pn-junction with the drift region. A second doping zone of the first conductivity type is formed in the semiconductor body at least along a part of the bottom surface of the step and extends up to the lateral edge, wherein the second doping zone is in contact with the drift region.
Abstract:
A semiconductor device includes: a semiconductor body having an active region and an edge termination region between the active region and a side surface of the semiconductor body; a first portion including silicon and nitrogen; a second portion including silicon and nitrogen, the second portion being in direct contact with the first portion; and a front side metallization in contact with the semiconductor body in the active region. The first portion separates the second portion from the semiconductor body. An average silicon content in the first portion is higher than in the second portion. The front side metallization is interposed between the first portion and the semiconductor body in the active region but not in the edge termination region, and/or the first portion and the second portion are both present in the edge termination region but not in the active region.
Abstract:
A semiconductor device includes a semiconductor body and a first portion including silicon and nitrogen. The first portion is in direct contact with the semiconductor body. A second portion including silicon and nitrogen is in direct contact with the first portion. The first portion is between the semiconductor body and the second portion. An average silicon content in the first portion is higher than in the second portion.