Abstract:
A connector includes a connector housing forming a receptacle configured to receive an add-in card. The connector further includes a first connector pin configured to electrically couple to the add-in card responsive to the add-in card being inserted into the receptacle. The first connector pin extends from the connector housing to contact a first solder pad disposed on a printed circuit board (PCB). The connector further includes a second connector pin configured to electrically couple to the add-in card responsive to the add-in card being inserted into the receptacle. The second connector pin extends from the connector housing to contact a second solder pad disposed on the PCB. The first connector pin is oriented toward the second connector pin to couple to the PCB in a toe-routing configuration and the second connector pin is oriented away from the first connector pin to couple to the PCB in the toe-routing configuration.
Abstract:
Techniques and mechanisms to provide a compact arrangement of vias extending through at least a portion of a printed circuit board (PCB) or other substrate. In an embodiment, the substrate includes a dielectric material and a sidewall structure forming a hole region that extends at least partially through the dielectric material. The hole region adjoins each of a first via and a second via, and is also located between the first via and second via. In another embodiment, the first via is coupled to exchange a first signal of a differential signal pair, and the second via is coupled to exchange a second signal of the same differential signal pair.
Abstract:
Apparatuses and processes associated with a dual in-line memory module (DIMM) adaptor card. Specifically, the DIMM adaptor card may be configured to removeably couple with a slot of a printed circuit board (PCB). The DIMM adaptor card may further be configured to removeably couple with a first DIMM and a second DIMM. Other embodiments may be described and/or claimed.
Abstract:
Apparatuses and processes associated with a dual in-line memory module (DIMM) adaptor card. Specifically, the DIMM adaptor card may be configured to removeably couple with a slot of a printed circuit board (PCB). The DIMM adaptor card may further be configured to removeably couple with a first DIMM and a second DIMM. Other embodiments may be described and/or claimed.
Abstract:
In one embodiment, first and second circuit boards may be coupled together. The first circuit board may include a first trace to electrically couple a first integrated circuit to a first via of the first circuit board. In turn, the second circuit board may include a second trace to electrically couple a first contact of a first memory socket adapted to the first circuit board and a first contact of a second memory socket adapted to the first circuit board. This second trace, when the circuit boards are coupled together, is to electrically couple to a first via of the second circuit board, to enable the first via of the second board to electrically couple to the first via of the first circuit board. Other embodiments are described and claimed.
Abstract:
Techniques and mechanisms to provide a compact arrangement of vias extending through at least a portion of a printed circuit board (PCB) or other substrate. In an embodiment, the substrate includes a dielectric material and a sidewall structure forming a hole region that extends at least partially through the dielectric material. The hole region adjoins each of a first via and a second via, and is also located between the first via and second via. In another embodiment, the first via is coupled to exchange a first signal of a differential signal pair, and the second via is coupled to exchange a second signal of the same differential signal pair.
Abstract:
Systems, apparatuses, and methods may include a circuit board having a plated through hole with a via portion and a stub portion and a self-coupled inductor electrically coupled to the via portion of the plated through hole. The self-coupled inductor may include a first inductor mutually coupled to a second inductor in series to reduce a capacitive effect of the stub portion of the plated through hole.
Abstract:
A circuit component is described herein. The circuit component includes a first signal line to propagate in a first direction and a second signal line to propagate a second direction. The circuit component includes a region to introduce crosstalk within the region that reduces another crosstalk generated at a location remote from the region based on a change in propagation direction of the first signal line and second signal line.
Abstract:
A bridge device is described herein. The bridge device may include a first via of a bridge device, the first via of the bridge device having a short via stub or no via stub, the first via of the bridge device to be communicatively coupled to a first via of a printed circuit board (PCB). The bridge device may include a second via of the bridge device, the second via of the bridge device having a short via stub or no via stub, the second via of the bridge device to be communicatively coupled to a second via of the PCB. A trace of the bridge device may communicatively couple the first via of the bridge device to the second via of the bridge device.