Abstract:
Described is a chromatography column assembly that includes a permanently deformable outer tube, an intermediate tube, an inner tube and a sorbent bed disposed within the inner tube. The sorbent bed may be in the form of packed chromatographic particles or a porous monolithic structure. A radial seal is provided by one or more uniform radial crimps at longitudinal locations on the assembly. The uniform radial crimp compresses the outer tube and underlying intermediate tube onto the inner tube to achieve a high pressure liquid tight seal between the three tubes. The length and depth of each crimp is accurately formed to accommodate the requirements of the particular application. Leakage along the tubing assembly is prevented and void volume is reduced or eliminated. No external ferrule or ferrule swaging mechanism is needed; therefore the chromatography column assembly is easily adapted for use in various chromatographic column configurations.
Abstract:
A method and apparatus for monitoring and controlling the nano-scale flow rate of fluid in the operating flow path of a HPLC system without relying on a nano-scale sensor in the operating flow path. A main flow sensor is disposed in the main flow path between the pump and a flow-divider. A waste flow sensor is disposed in the waste flow path downstream of the splitter. The output signal of the waste flow sensor is subtracted from the output signal of the main flow sensor in a difference circuit. The difference signal is divided by the output signal from the main flow sensor in a divider circuit. The output of the divider circuit represents an empirical split ratio of the flow-divider and is independent of media composition.
Abstract:
A method of analyzing samples includes loading a sufficient quantity of the sample onto a trap column to overload the trap column; heating an analytical column and the trap column to a greater temperature than the analytical column; and pumping a solvent, to the trap column, having a solvent composition profile that, in cooperation with a temperature differential, causes at least some of the components to elute sequentially from the trap column to the analytical column and focus on the analytical column prior to eluting from the analytical column; or optionally: loading a small-molecule sample onto a cooled portion of an analytical column; heating the analytical column; and pumping a solvent, to the heated analytical column, to elute the components from the analytical column. Chromatographic separation includes: a trap column; a separation column; a trap-column heater; a separation-column heater; a solvent pump unit; and a control unit can be used.
Abstract:
Described are techniques for fabricating one or more parts of a valve used in a liquid chromatography system. At least one of a rotor and a stator are provided. The rotor is included in the valve and has a first surface facing a stator. The stator is included in the valve and has a second surface facing the rotor. A pattern is formed in at least one of the first surface and the second surface. Forming the pattern includes compressing the at least one surface by applying pressure thereto causing displacement of material to form at least one groove.
Abstract:
Embodiments of the present invention are directed to methods and apparatus for placing a sample in a chromatographic system. The device and method feature placing samples held in a sample loop to pressurization prior to placing such sample loop in communication with high pressure conduits.
Abstract:
A solvent delivery subsystem for a chromatography device performs relatively low pressure, high flow mixing of solvents to form a gradient and subsequent high pressure, low flow delivery of the gradient to the separation column. The mixing of the gradient is independent and does not interfere with the gradient delivery. To form the gradient, the outputs of an aqueous pump and an organic pump are mixed to fill a storage capillary while a downstream point from the storage capillary is vented to atmosphere. After gradient formation, the vent to atmosphere is closed, the solvent delivery system rises to high pressure, and only the aqueous pump runs for gradient delivery. To maintain integrity of the fluid stream, the solvent delivery system uses feed forward compensation and controls at least one parameter selected from the group consisting of pressure and flow in the conduit means to follow a gradual ramp.
Abstract:
A method and apparatus for monitoring and controlling the nano-scale flow rate of fluid in the operating flow path of a HPLC system without relying on a nano-scale sensor in the operating flow path. A main flow sensor is disposed in the main flow path between the pump and a flow-divider. A waste flow sensor is disposed in the waste flow path downstream of the splitter. The output signal of the waste flow sensor is subtracted from the output signal of the main flow sensor in a difference circuit. The difference signal is divided by the output signal from the main flow sensor in a divider circuit. The output of the divider circuit represents an empirical split ratio of the flow-divider and is independent of media composition.