Abstract:
In one embodiment, the optoelectronic semiconductor device comprises at least two metallic lead frame parts and a circuit chip on the lead frame parts. An electrically insulating and opaque matrix material mechanically connects the lead frame parts. The circuit chip is embedded in the matrix material, so that a carrier is formed by the matrix material together with the lead frame parts and the circuit chip. An optoelectronic semiconductor chip is provided on a carrier upper side. Furthermore, the semiconductor device comprises at least one optical component on the carrier upper side.
Abstract:
An optoelectronic component includes a housing that includes a rectangular basic shape with four sides. The sides each merge into one another at a corner point. At least two carrier arms of two contact elements of a lead frame are guided to an edge of the housing. The two carrier arms are arranged on different sides of the housing. The two carrier arms are each at different spacings from the two corner points of the side on which the carrier arms are arranged. The spacings differ at least in the width of a carrier arm.
Abstract:
An optoelectronic component includes a housing including a plastic material and a first lead frame section at least partly embedded in the plastic material, a first recess and a second recess, wherein a first upper section of an upper side of the first lead frame section is not covered by the plastic material in the first recess, a second upper section of the upper side of the first lead frame section is not covered by the plastic material in the second recess, the first recess and the second recess are separated from one another by a section of the plastic material, an optoelectronic semiconductor chip is arranged in the first recess, and no optoelectronic semiconductor chips is arranged in the second recess.
Abstract:
An electronic component, a leadframe, and a method for producing an electronic component are disclosed. In an embodiment, the electronic component includes a housing and a leadframe section partly embedded in the housing, wherein the leadframe section includes a first quadrant, a second quadrant, a third quadrant and a fourth quadrant, wherein each of the quadrants has a first leadframe part and a second leadframe part, wherein each first leadframe part includes a chip landing area, wherein the chip landing areas of all four quadrants are arranged adjacently to a common central region of the leadframe section, and wherein the four quadrants are configured symmetrically with respect to one another.
Abstract:
A method of producing an optoelectronic lighting device includes providing a carrier on which is arranged at least one light-emitting diode including a surface that emits light during operation of the light-emitting diode, carrying out an injection molding process to encapsulate the light-emitting diode by molding as far as the light-emitting surface such that a molded housing is formed within which the light-emitting diode is encapsulated by molding, wherein the light-emitting surface remains at least partly free, shaping a reflector that reflects light emitted by the light-emitting surface during the injection molding process such that the reflector is formed integrally with the housing, at least partly masking the light-emitting surface, coating the reflector with a light-reflecting layer after the masking, and demasking the light-emitting surface after the coating.
Abstract:
A method for producing a packaged component is disclosed. In one embodiment, a lead frame composite has first lead frame parts, second lead frame parts and test contacts, electrically connecting via first electrical connections the first lead frame parts to the other first lead frame parts. A potting body is formed on the lead frame composite thereby mechanically connecting the first lead frame parts to the second lead frame parts and encapsulating the first electrical connections. First semiconductor components are placed on the first lead frame parts after forming the potting body. The first semiconductor components are electrically connected to the second lead frame parts via second electrical connections. The first semiconductor components are electrically tested at the test contacts prior to singulating the lead frame composite and the potting body. The lead frame composite and the potting body are singulated thereby forming the packaged semiconductor components.
Abstract:
A method for producing an optoelectronic thin-film chip semiconductor device is specified. A conductor structure is applied on a carrier and a multiplicity of optoelectronic semiconductor chips are arranged between the conductor structures. Each of the optoelectronic semiconductor chips includes a layer at a top side. Furthermore, electrical connections between semiconductor chip and the conductor structure are established, for instance using a bonding wire. The semiconductor chips and the conductor structure are surrounded with a molded body. The molded body does not project beyond the optoelectronic semiconductor chips at the top side thereof facing away from the carrier. Moreover, the carrier is removed and the semiconductor chips surrounded by molding are singulated.
Abstract:
A housing for an optical component is provided in various embodiments. The housing has a leadframe section and a mold compound. The leadframe section is formed from an electrically conductive material and has a first side and a second side facing away from the first side. On the first side, the leadframe section has at least one first receiving region for receiving the optical component and/or at least one contact region for electrically contacting the optical component. The leadframe section has at least one trench which is formed in the leadframe section on the first side thereof alongside the receiving region and/or the contact region. The leadframe section is embedded in the mold compound. The mold compound has at least one receiving recess in which the first receiving region and/or the contact region and the trench are arranged.
Abstract:
An electronic device includes a base body, which has a top side and also an underside lying opposite the top side. The base body has connection locations at its underside. An electronic component is arranged at the base body at the top side of the base body. The base body has at least one side area having at least one point of inspection having a first region and second region. The second region is embodied as an indentation in the first region. The first and the second region contain different materials.
Abstract:
A method of producing a component carrier for an electronic component includes a lead frame section including an electrically conductive material, the lead frame section having a first contact section that forms a first electrical contact element, a second contact section that forms a second electrical contact element, and a reception region that receives the electronic component, at least the reception region and the second contact section being electrically conductively connected to one another, a thermally conductive and electrically insulating intermediate element that dissipates heat from the reception region and electrically insulates the reception region formed at least on an opposite side of the lead frame section from the reception region, and a thermal contact that thermally contacts the electronic component formed at least on a side of the intermediate element facing away from the reception region.