Abstract:
A method that includes forming a gate of a semiconductor device on a substrate and forming a recess for an embedded silicon-straining material in source and drain regions for the gate. In this method, a proximity value, which is defined as a distance between the gate and a closest edge of the recess, is controlled by controlling formation of an oxide layer provided beneath the gate. The method can also include feedforward control of process steps in the formation of the recess based upon values measured during the formation of the recess. The method can also apply feedback control to adjust a subsequent recess formation process performed on a subsequent semiconductor device based on the comparison between a measured proximity value and a target proximity value to decrease a difference between a proximity value of the subsequent semiconductor device and the target proximity value.
Abstract:
A stress enhanced MOS transistor and methods for its fabrication are provided. In one embodiment the method comprises forming a gate electrode overlying and defining a channel region in a monocrystalline semiconductor substrate. A trench having a side surface facing the channel region is etched into the monocrystalline semiconductor substrate adjacent the channel region. The trench is filled with a second monocrystalline semiconductor material having a first concentration of a substitutional atom and with a third monocrystalline semiconductor material having a second concentration of the substitutional atom. The second monocrystalline semiconductor material is epitaxially grown to have a wall thickness along the side surface sufficient to exert a greater stress on the channel region than the stress that would be exerted by a monocrystalline semiconductor material having the second concentration if the trench was filled by the third monocrystalline material alone.
Abstract:
The movement and mixing of microdroplets through microchannels is described employing silicon-based microscale devices, comprising microdroplet transport channels, reaction regions, electrophoresis modules, and radiation detectors. The discrete droplets are differentially heated and propelled through etched channels. Electronic components are fabricated on the same substrate material, allowing sensors and controlling circuitry to be incorporated in the same device.
Abstract:
When forming sophisticated high-k metal gate electrode structures, the uniformity of the device characteristics may be enhanced by growing a threshold adjusting semiconductor alloy on the basis of a hard mask regime, which may result in a less pronounced surface topography, in particular in densely packed device areas. To this end, in some illustrative embodiments, a deposited hard mask material may be used for selectively providing an oxide mask of reduced thickness and superior uniformity.
Abstract:
A microactuator may be configured by activating a source of electromagnetic radiation to heat and melt a selected set of phase-change plugs embedded in a substrate of the microactuator, pressurizing a common pressure chamber adjacent to each of the plugs to deform the melted plugs, and deactivating the source of electromagnetic radiation to cool and solidify the melted plugs.
Abstract:
When forming sophisticated high-k metal gate electrode structures on the basis of a replacement gate approach, pronounced loss of the interlayer dielectric material may be avoided by inserting at least one surface modification process, for instance in the form of a nitridation process. In this manner, leakage paths caused by metal residues formed in the interlayer dielectric material may be significantly reduced.
Abstract:
Methods for fabricating semiconductor devices are provided. The methods include providing a semiconductor substrate having pFET and nFET regions, each having active areas and shallow trench isolation. A hardmask layer is formed overlying the semiconductor substrate. A photoresist layer is provided over the hardmask layer. The phoresist layer is patterned. An exposed portion of the hardmask layer is removed from one of the pFET region and nFET region with the patterned photoresist acting as an etch mask to define a masked region and an unmasked region. An epitaxial silicon layer is formed on the active area in the unmasked region. A protective oxide layer is formed overlying the epitaxial silicon layer. The hardmask layer is removed from the masked region with the protective oxide layer protecting the epitaxial silicon layer during such removal step. The protective oxide layer is removed from the epitaxial silicon layer.
Abstract:
Methods for protecting gate stacks during fabrication of semiconductor devices and semiconductor devices fabricated from such methods are provided. In an embodiment, a method for fabricating a semiconductor device comprises forming a gate stack comprising a first gate stack-forming layer overlying a semiconductor substrate and forming first sidewall spacers about sidewalls of the gate stack. After the step of forming the first sidewall spacers, a portion of the first gate stack-forming layer is exposed. The exposed portion is anisotropically etched using the gate stack and the first sidewall spacers as an etch mask. Second sidewall spacers are formed adjacent the first sidewall spacers after the step of anisotropically etching.
Abstract:
A low energy surface is formed by a high temperature anneal of the surfaces of trenches on each side of a gate stack. The material of the semiconductor layer reflows during the high temperature anneal such that the low energy surface is a crystallographic surface that is at a non-orthogonal angle with the surface normal of the semiconductor layer. A lattice mismatched semiconductor material is selectively grown on the semiconductor layer to fill the trenches, thereby forming embedded lattice mismatched semiconductor material portions in source and drain regions of a transistor. The embedded lattice mismatched semiconductor material portions can be in-situ doped without increasing punch-through. Alternately, a combination of intrinsic selective epitaxy and ion implantation can be employed to form deep source and drain regions.
Abstract:
Methods for protecting gate stacks during fabrication of semiconductor devices and semiconductor devices fabricated from such methods are provided. In an embodiment, a method for fabricating a semiconductor device comprises forming a gate stack comprising a first gate stack-forming layer overlying a semiconductor substrate and forming first sidewall spacers about sidewalls of the gate stack. After the step of forming the first sidewall spacers, a portion of the first gate stack-forming layer is exposed. The exposed portion is anisotropically etched using the gate stack and the first sidewall spacers as an etch mask. Second sidewall spacers are formed adjacent the first sidewall spacers after the step of anisotropically etching.