Abstract:
At least one of a plurality of transistors which are highly integrated in an element is provided with a back gate without increasing the number of manufacturing steps. In an element including a plurality of transistors which are longitudinally stacked, at least a transistor in an upper portion includes a metal oxide having semiconductor characteristics, a same layer as a gate electrode of a transistor in a lower portion is provided to overlap with a channel formation region of the transistor in an upper portion, and part of the same layer as the gate electrode functions as a back gate of the transistor in an upper portion. The transistor in a lower portion which is covered with an insulating layer is subjected to planarization treatment, whereby the gate electrode is exposed and connected to a layer functioning as source and drain electrodes of the transistor in an upper portion.
Abstract:
A variable capacitor is formed from a pair of electrodes and a dielectric interposed between the electrodes over a substrate, and an external input is detected by changing capacitance of the variable capacitor by a physical or electrical force. Specifically, a variable capacitor and a sense amplifier are provided over the same substrate, and the sense amplifier reads the change of capacitance of the variable capacitor and transmits a signal in accordance with the input to a control circuit.
Abstract:
A variable capacitor is formed from a pair of electrodes and a dielectric interposed between the electrodes over a substrate, and an external input is detected by changing capacitance of the variable capacitor by a physical or electrical force. Specifically, a variable capacitor and a sense amplifier are provided over the same substrate, and the sense amplifier reads the change of capacitance of the variable capacitor and transmits a signal in accordance with the input to a control circuit.
Abstract:
A pulse converter circuit includes a logic circuit to which a first signal is input and from which a second signal is output. The logic circuit includes a p-channel transistor which determines whether a voltage of the second signal is set to a first voltage depending on a voltage of the gate; and an n-channel transistor which determines whether the voltage of the second signal is set to a second voltage, which is higher than the first voltage, depending on a voltage of the gate. The p-channel transistor includes a semiconductor layer containing an element of a group 14. The n-channel transistor includes an oxide semiconductor layer.
Abstract:
A semiconductor memory device includes a bit line; two or more word lines; and a memory cell including two or more sub memory cells that each include a transistor and a capacitor. One of a source and a drain of the transistor is connected to the bit line, the other of the source and the drain of the transistor is connected to the capacitor, a gate of the transistor is connected to one of the word lines, and each of the sub memory cells has a different capacitance of the capacitor.
Abstract:
A semiconductor device which includes an oxide semiconductor and has favorable electrical characteristics is provided. In the semiconductor device, an oxide semiconductor film and an insulating film are formed over a substrate. Side surfaces of the oxide semiconductor film are in contact with the insulating film. The oxide semiconductor film includes a channel formation region and regions containing a dopant between which the channel formation region is sandwiched. A gate insulating film is formed on and in contact with the oxide semiconductor film. A gate electrode with sidewall insulating films is formed over the gate insulating film. A source electrode and a drain electrode are formed in contact with the oxide semiconductor film and the insulating film.
Abstract:
A minute transistor and the method of manufacturing the minute transistor. A source electrode layer and a drain electrode layer are each formed in a corresponding opening formed in an insulating layer covering a semiconductor layer. The opening of the source electrode layer and the opening of the drain electrode layer are formed separately in two distinct steps. The source electrode layer and the drain electrode layer are formed by depositing a conductive layer over the insulating layer and in the openings, and subsequently removing the part located over the insulating layer by polishing. This manufacturing method allows for the source electrode later and the drain electrode layer to be formed close to each other and close to a channel forming region of the semiconductor layer. Such a structure leads to a transistor having high electrical characteristics and a high manufacturing yield even in the case of a minute structure.
Abstract:
It is an object to provide a memory device where an area occupied by a memory cell is small, and moreover, a memory device where an area occupied by a memory cell is small and a data holding period is long. A memory device includes a bit line, a capacitor, a first insulating layer provided over the bit line and including a groove portion, a semiconductor layer, a second insulating layer in contact with the semiconductor layer, and a word line in contact with the second insulating layer. Part of the semiconductor layer is electrically connected to the bit line in a bottom portion of the groove portion, and another part of the semiconductor layer is electrically connected to one electrode of the capacitor in a top surface of the first insulating layer.
Abstract:
A miniaturized transistor is provided with high yield. Further, a semiconductor device which has high on-state characteristics and which is capable of high-speed response and high-speed operation is provided. In the semiconductor device, an oxide semiconductor layer, a gate insulating layer, a gate electrode layer, an insulating layer, a conductive film, and an interlayer insulating layer are stacked in this order. A source electrode layer and a drain electrode layer are formed in a self-aligned manner by cutting the conductive film so that the conductive film over the gate electrode layer and the conductive layer is removed and the conductive film is divided. An electrode layer which is in contact with the oxide semiconductor layer and overlaps with a region in contact with the source electrode layer and the drain electrode layer is provided.