Abstract:
Embodiments provide a light emitting diode and a method of fabricating the same. The light emitting diode includes a base, a light emitting structure disposed on the base, at least one first electrode disposed on the light emitting structure; and a second electrode disposed under the light emitting structure, wherein at least a portion of the second electrode is covered by the base and the base includes a supporting insulator and at least one bulk electrode embedded in the supporting insulator and electrically connected to the light emitting structure, and a surface of the at least one bulk electrode is exposed through the supporting insulator. The light emitting diode has excellent reliability and efficiency.
Abstract:
Disclosed herein is a light emitting device manufactured by separating a growth substrate in a wafer level. The light emitting device includes: a base; a light emitting structure disposed on the base; and a plurality of second contact electrodes disposed between the base and the light emitting structure, wherein the base includes at least two bulk electrodes electrically connected to the light emitting structure and an insulation support disposed between the bulk electrodes and enclosing the bulk electrodes, the insulation support and the bulk electrodes each including concave parts and convex parts engaged with each other on surfaces facing each other, and the convex parts including a section in which a width thereof is changed in a protrusion direction.
Abstract:
An LED is provided to include: a first conductive type semiconductor layer; an active layer positioned over the first conductive type semiconductor layer; a second conductive type semiconductor layer positioned over the active layer; and a defect blocking layer comprising a masking region to cover at least a part of the top surface of the second conductive semiconductor masking region to cover at least a part of the top surface of the second conductive semiconductor layer and an opening region to partially expose the top surface of the second conductive type semiconductor layer, wherein the active layer and the second conductive type semiconductor layer are disposed to expose a part of the first conductive type semiconductor layer, and wherein the defect blocking layer comprises a first region and a second region surrounding the first region, and a ratio of the area of the opening region to the area of the masking region in the first region is different from a ratio of the area of the opening region to the area of the masking region in the second region.
Abstract:
A light-emitting diode includes a support substrate, a semiconductor stack disposed on the support substrate, the semiconductor stack including a p-type compound semiconductor layer, an active layer and a n-type semiconductor layer, a reflective metal layer disposed between the support substrate and the semiconductor stack, the reflective metal layer being in ohmic contact with the p-type compound semiconductor layer of the semiconductor stack and having a groove exposing a portion of the semiconductor stack, a first electrode pad contacting the n-type compound semiconductor layer of the semiconductor stack, an electrode extension connected to the first electrode pad, the electrode extension disposed directly over the groove along a line perpendicular to the support substrate, an upper insulation layer disposed between the first electrode pad and the semiconductor stack. The electrode extension includes an Ni layer contacting the n-type compound semiconductor layer, and two Au layers disposed on the Ni layer.
Abstract:
A light-emitting diode includes a support substrate, a semiconductor stack disposed on the support substrate, the semiconductor stack including a p-type compound semiconductor layer, an active layer and a n-type semiconductor layer, a reflective metal layer disposed between the support substrate and the semiconductor stack, the reflective metal layer being in ohmic contact with the p-type compound semiconductor layer of the semiconductor stack and having a groove exposing a portion of the semiconductor stack, a first electrode pad contacting the n-type compound semiconductor layer of the semiconductor stack, an electrode extension connected to the first electrode pad, the electrode extension disposed directly over the groove along a line perpendicular to the support substrate, an upper insulation layer disposed between the first electrode pad and the semiconductor stack. The electrode extension includes an Ni layer contacting the n-type compound semiconductor layer, and two Au layers disposed on the Ni layer.
Abstract:
Disclosed herein is a light emitting device. The light emitting device is provided to include a light emitting structure, a first electrode pad, a second electrode pad and a heat dissipation pad, and a substrate on which the light emitting diode is mounted. The substrate includes a base; an insulation pattern formed on the base; and a conductive pattern disposed on the insulation pattern. The base includes a post and a groove separating the post from the conductive pattern. An upper surface of the post is placed lower than an upper surface of the conductive pattern, the heat dissipation pad contacts the upper surface of the post, and the first electrode pad and the second electrode pad contact the conductive pattern. With this structure, the light emitting device has excellent properties in terms of electrical stability and heat dissipation efficiency.
Abstract:
Exemplary embodiments provide a light emitting diode and a method for manufacturing the same. The light emitting diode includes a light emitting structure, a plurality of holes formed through a second conductive type semiconductor layer and an active layer such that a first conductive type semiconductor layer is partially exposed therethrough, and a first electrode and a second electrode electrically connected to the first conductive type semiconductor layer and the second conductive type semiconductor layer, respectively, while being insulated from each other. The second electrode includes openings corresponding to the plurality of holes, a plurality of unit electrode layers separated from each other, and at least one connection layer electrically connecting at least two unit electrode layers to each other. The first electrode forms ohmic contact with the first conductive type semiconductor layer through the plurality of holes and partially covers the light emitting structure.
Abstract:
Exemplary embodiments of the present invention disclose a semiconductor device and a method of fabricating the same. The semiconductor device includes a gallium nitride substrate, a plurality of semiconductor stacks disposed on the gallium nitride substrate, and an insulation pattern disposed between the gallium nitride substrate and the plurality of semiconductor stacks, the insulation pattern insulating the semiconductor stacks from the gallium nitride substrate.
Abstract:
A light emitting device including a board, a first stacked structure configured to emit light having a first wavelength, a second stacked structure configured to emit light having a second wavelength, a third stacked structure configured to emit light having a third wavelength, a first connection electrode electrically connected to the first stacked structure, the second stacked structure, and the third stacked structure, and a protection material covering at least a portion of the first connection electrode, in which each of the first, second, and third stacked structures is configured to selectively emit light while being connected to the first connection electrode, and the protection material is configured to transmit at least 50% of light having the first wavelength, light having the second wavelength, and light having the third wavelength upon operation of each of the first, second, and third stacked structures.
Abstract:
A light emitting device including a first light emitter, a second light emitter, and a third light emitter, each including a first conductivity type semiconductor layer and a second conductivity type semiconductor layer. An adhesive layer includes a first adhesive portion disposed between the first light emitter, and the second light emitter, and a second adhesive portion disposed between the second light emitter and the third light emitter, in which the second light emitter is disposed between the first light emitter and the third light emitter, and the first adhesive portion and the second adhesive portion are optically transmitting and connect adjacent light emitters.