摘要:
A control apparatus for a hybrid vehicle which comprises an internal-combustion engine and a motor as a power source, and connects at least one of the internal-combustion engine and the motor to driving wheels of the vehicle through a transmission so as to transmit a driving force to the driving wheels, comprises: a target torque setting device which sets a target torque with respect to a crank end torque, which is a torque at the end of a crank shaft, of the power plant torque output from the power plant being the internal combustion engine and the motor, based on a change of accelerator pedal opening from fully opened to fully closed; and a torque allocation device which allocates the target torque corresponding to the accelerator pedal opening, to an engine torque instruction, being a required value with respect to the output torque from the internal combustion engine, and to a motor torque instruction, being a required value with respect to the output torque from the motor. The generation of torque fluctuations which are not expected by the occupants of the vehicle are suppressed, and a torque which unerringly reflects the driver's intention is output.
摘要:
An air-fuel control system for use with an internal combustion engine has a catalytic converter disposed in an exhaust system of the engine, for purifying an exhaust gas emitted from the engine, a first exhaust gas sensor disposed in the exhaust system for detecting an air-fuel ratio of the exhaust gas upstream of the catalytic converter, a second exhaust gas sensor disposed in the exhaust system for detecting the concentration of a component of the exhaust gas which has passed through the catalytic converter, downstream of the catalytic converter, and a control unit for controlling an air-fuel ratio of the engine based on outputs from the first exhaust gas sensor and the second exhaust gas sensor. The control unit includes an adaptive sliding mode controller for determining a correction quantity to correct the air-fuel ratio of the engine so as to equalize the concentration of the component of the exhaust gas downstream of the catalytic converter to a predetermined appropriate value, according to an adaptive sliding mode control process based on the output from the second exhaust gas sensor, and a feedback controller for controlling a rate at which fuel is supplied to the engine so as to converge the concentration of the component of the exhaust gas downstream of the catalytic converter toward the predetermined appropriate value, based on the correction quantity and the output from the first exhaust gas sensor.
摘要:
A system for purifying exhaust gas generated by an internal combustion engine including a bypass branching out from the exhaust pipe downstream of a catalyst and merging to the exhaust pipe, an adsorber installed in the bypass, a bypass valve member which closes the bypass, and an EGR conduit connected to the bypass at one end and connected to the air intake system for recirculating the exhaust gas to the air intake system. The bypass valve member is opened for a period after engine startup to introduce the exhaust gas such that the adsorber installed in the bypass adsorbs the unburnt HC component in the exhaust gas. The adsorber adsorbs the HC component when the exhaust temperature rises and the adsorbed component is recirculated to the air intake system through the EGR conduit. In the system, the bypass valve is provided at or close to the branching point in the exhaust pipe and a chamber is provided close to the branching point such that the conduit is connected to the bypass at the one end in the chamber. The bypass valve member is combined with an exhaust pipe valve member as a combination valve such that when the bypass valve member closes the bypass, the exhaust pipe valve member opens the exhaust pipe. With the arrangement, the system can effectively prevent the exhaust pipe from being clogged even when a valve for closing a bypass is stuck in the closed position. At the same time, the system can provide a relatively short EGR conduit for recirculating unburnt HC component adsorbed from the adsorber and the adsorption and desorption are conducted optimally. A system for purifying exhaust gas generated by an internal combustion engine including a bypass branching out from the exhaust pipe downstream of a catalyst and merging to the exhaust pipe, an adsorber installed in the bypass, a bypass valve member which closes the bypass, and an EGR conduit connected to the bypass at one end and connected to the air intake system for recirculating the exhaust gas to the air intake system. The adsorber adsorbs the HC component in the exhaust gas when the exhaust gas temperature rises and the adsorbed component is recirculated to the air intake system through the EGR conduit. The bypass valve member is combined with an exhaust pipe vale member as a combination valve such that when the bypass valve member closes the bypass, the exhaust pipe valve member opens the exhaust pipe.
摘要:
An object is to improve fuel consumption efficiency. Accordingly, a fuel gradual addition delay time when starting (engine water temperature) TMKSTDLYT which changes in a decreasing trend with an increase in the engine water temperature is set (step S10). A fuel gradual addition delay time when starting (state of charge)TMKSTDLYQ which changes in an increasing trend with an increase in the state of charge QBAT is set (step S12 and S14). A fuel gradual addition delay time when starting (vehicle speed) TMKSTDLYV which changes in a decreasing trend with an increase in vehicle speed VP is set (step S13 and S15). Then the greatest value of; the fuel gradual addition delay time when starting (engine water temperature)TMKSTDLYT, the fuel gradual addition delay time when starting (state of charge)TMKSTDLYQ, and the fuel gradual addition delay time when starting (vehicle speed) TMKSTDLYV is set as a fuel gradual addition delay time when starting TMKSTDLY (step S16).
摘要:
A control apparatus for a hybrid vehicle which comprises an internal-combustion engine and a motor as a power source, and connects at least one of the internal-combustion engine and the motor to driving wheels of the vehicle through a transmission so as to transmit a driving force to the driving wheels, comprises: a target torque setting device which sets a target torque with respect to a crank end torque, which is a torque at the end of a crank shaft, of the power plant torque output from the power plant being the internal combustion engine and the motor, based on a change of accelerator pedal opening from fully opened to fully closed; and a torque allocation device which allocates the target torque corresponding to the accelerator pedal opening, to an engine torque instruction, being a required value with respect to the output torque from the internal combustion engine, and to a motor torque instruction, being a required value with respect to the output torque from the motor. The generation of torque fluctuations which are not expected by the occupants of the vehicle are suppressed, and a torque which unerringly reflects the driver's intention is output.
摘要:
An FI/AT/MGECU in a control unit calculates an EV travel capable battery terminal discharge power which is the dischargeable power from a battery during EV travel which is travel under the driving force from the motor, according to a state of charge of the battery and a vehicle travelling speed. Based on the calculated EV travel capable battery terminal discharge power and a predetermined limit value, an energy management charge-discharge required battery terminal power is calculated. Then an energy management charge-discharge required torque corresponding to the energy management charge-discharge required battery terminal power, that is the motor torque capable of being output, is calculated based on; a predetermined PDU-MOT overall efficiency efima which is the conversion efficiency of the electric power and the motive power between the power drive unit and the motor, a rotation frequency of the motor, and a predetermined torque limit value for protecting the motor.
摘要:
A hybrid vehicle is provided in which even if the temperature of a catalyst is decreased after a long period of travel by means of a motor, the temperature of the catalyst can be increased immediately and the exhaust of harmful materials can be suppressed. A hybrid vehicle having a normal travel mode as a travel mode in which travel is conducted while switching between motor travel and engine travel in accordance with the degree of the depression of an accelerator, comprising: a switching device being capable of switching between the normal travel mode and a specific travel mode in which travel is conducted only by means of an engine irrespective of the degree of the depression of the accelerator; an activity detector for detecting activity of a catalyst provided in the exhaust system of the engine employed in the engine travel; and a determination device for determining whether or not the catalyst is activated; wherein when the determination device determines that the catalyst is not activated, the switching device compels the switching of the travel mode to the specific travel mode engine.
摘要:
A system for purifying exhaust gas generated by an internal combustion engine including a bypass branching out from the exhaust pipe downstream of a catalyst and merging to the exhaust pipe, an adsorber installed in the bypass, a bypass valve member which closes the bypass, and an EGR conduit connected to the bypass at one end and connected to the air intake system for recirculating the exhaust gas to the air intake system. The bypass valve member is opened for a period after engine startup to introduce the exhaust gas such that the adsorber installed in the bypass adsorbs the unburnt HC component in the exhaust gas. The adsorber adsorbs the HC component when the exhaust temperature rises and the adsorbed component is recirculated to the air intake system through the EGR conduit. In the system, the bypass valve is provided at or close to the branching point in the exhaust pipe and a chamber is provided close to the branching point such that the conduit is connected to the bypass at the one end in the chamber. The bypass valve member is combined with an exhaust pipe valve member as a combination valve such that when the bypass valve member closes the bypass, the exhaust pipe valve member opens the exhaust pipe. With the arrangement, the system can effectively prevent the exhaust pipe from being clogged even when a valve for closing a bypass is stuck in the closed position. At the same time, the system can provide a relatively short EGR conduit for recirculating unburnt HC component adsorbed from the adsorber and the adsorption and desorption are conducted optimally.
摘要:
A deterioration of a catalytic converter for purifying an exhaust gas produced by burning a mixture of a fuel and air in an internal combustion engine, for example, is judged by supplying the exhaust gas to the catalytic converter, detecting the amount of a predetermined component of the exhaust gas which has passed through the catalytic converter with an exhaust gas sensor disposed downstream of the catalytic converter, calculating a target air-fuel ratio for the exhaust gas to be supplied to the catalytic converter for achieving a predetermined emission purifying capability of the catalytic converter based on a detected output signal from the exhaust gas sensor, and judging a deteriorated state of the catalytic converter based on the calculated target air-fuel ratio.
摘要:
A control system is provided in an internal combustion engine in which a valve timing such as an opening time point and lift amount of an intake valve can be switched to a low-speed or high-speed valve timing within a lean-burn control range established in accordance with the operational state, such as an intake pipe internal absolute pressure and an engine revolution number of the engine, wherein an air-fuel ratio of an air-fuel mixture supplied to the internal combustion engine is enriched for a predetermined time when the valve timing is switched from the low-speed valve timing to the high-speed valve timing while carrying out a lean-burn control. Thus, even when the valve timing is switched over to the high-speed valve timing, the lean-burn control is carried out to prevent a misfiring or an unstable combustion state caused when the valve timing is switched during the lean-burn control, thereby providing a reduction in emission and an enhancement in drivability, while enhancing the specific fuel consumption.