Abstract:
An integrated circuit and method having a JFET with a buried drift layer and a buried channel in which the buried channel is formed by implanting through segmented implant areas so that the doping density of the buried channel is between 25 percent and 50 percent of the doping density of the buried drift layer.
Abstract:
A semiconductor device having a vertical drain extended MOS transistor may be formed by forming deep trench structures to define vertical drift regions of the transistor, so that each vertical drift region is bounded on at least two opposite sides by the deep trench structures. The deep trench structures are spaced so as to form RESURF regions for the drift region. Trench gates are formed in trenches in the substrate over the vertical drift regions. The body regions are located in the substrate over the vertical drift regions.
Abstract:
A semiconductor device includes a bidirectional GaN FET formed on a non-insulating substrate. The semiconductor device further includes a first electrical clamp connected between the substrate and a first source/drain node of the bidirectional GaN FET, and a second electrical clamp connected between the substrate and a second source/drain node of the bidirectional GaN FET. The first clamp and the second clamp are configured to bias the substrate at a lower voltage level of an applied bias to the first source/drain node and an applied bias to the second source/drain node, within an offset voltage of the relevant clamp.
Abstract:
An integrated circuit is formed on a substrate containing a semiconductor material having a first conductivity type. A deep well having a second, opposite, conductivity type is formed in the semiconductor material of the first conductivity type. A deep isolation trench is formed in the substrate through the deep well so as separate an unused portion of the deep well from a functional portion of the deep well. The functional portion of the deep well contains an active circuit element of the integrated circuit. The separated portion of the deep well does not contain an active circuit element. A contact region having the second conductivity type and a higher average doping density than the deep well is formed in the separated portion of the deep well. The contact region is connected to a voltage terminal of the integrated circuit.
Abstract:
A semiconductor device having a vertical drain extended MOS transistor may be formed by forming deep trench structures to define vertical drift regions of the transistor, so that each vertical drift region is bounded on at least two opposite sides by the deep trench structures. The deep trench structures are spaced so as to form RESURF regions for the drift region. Trench gates are formed in trenches in the substrate over the vertical drift regions. The body regions are located in the substrate over the vertical drift regions.
Abstract:
An integrated circuit containing an extended drain MOS transistor which has a drift layer, an upper RESURF layer over and contacting an upper surface of the drift layer, and a buried drain extension below the drift layer which is electrically connected to the drift layer at the drain end and separated from the drift layer at the channel end. A lower RESURF layer may be formed between the drift layer and the buried drain extension at the channel end. Any of the upper RESURF layer, the drift layer, the lower RESURF layer and the buried drain extension may have a graded doping density from the drain end to the channel end. A process of forming an integrated circuit containing an extended drain MOS transistor which has the drift layer, the upper RESURF layer, and the buried drain extension.
Abstract:
A semiconductor device having a vertical drain extended MOS transistor may be formed by forming deep trench structures to define vertical drift regions of the transistor, so that each vertical drift region is bounded on at least two opposite sides by the deep trench structures. The deep trench structures are spaced so as to form RESURF regions for the drift region. Trench gates are formed in trenches in the substrate over the vertical drift regions. The body regions are located in the substrate over the vertical drift regions.
Abstract:
An integrated circuit including an isolated device which is isolated with a lower buried layer combined with deep trench isolation. An upper buried layer, with the same conductivity type as the substrate, is disposed over the lower buried layer, so that electrical contact to the lower buried layer is made at a perimeter of the isolated device. The deep trench isolation laterally surrounds the isolated device. Electrical contact to the lower buried layer sufficient to maintain a desired bias to the lower buried layer is made along less than half of the perimeter of the isolated device, between the upper buried layer and the deep trench.
Abstract:
A semiconductor device includes a depletion mode GaN FET and an integrated driver/cascode IC. The integrated driver/cascode IC includes an enhancement mode cascoded NMOS transistor which is connected in series to a source node of the GaN FET. The integrated driver/cascode IC further includes a driver circuit which conditions a gate input signal and provides a suitable digital waveform to a gate node of the cascoded NMOS transistor. The cascoded NMOS transistor and the driver circuit are formed on a same silicon substrate.
Abstract:
An integrated circuit containing an analog MOS transistor has an implant mask for a well which blocks well dopants from two diluted regions at edges of the gate, but exposes a channel region to the well dopants. A thermal drive step diffuses the implanted well dopants across the two diluted regions to form a continuous well with lower doping densities in the two diluted regions. Source/drain regions are formed adjacent to and underlapping the gate by implanting source/drain dopants into the substrate adjacent to the gate using the gate as a blocking layer and subsequently annealing the substrate so that the implanted source/drain dopants provide a desired extent of underlap of the source/drain regions under the gate. Drain extension dopants and halo dopants are not implanted into the substrate adjacent to the gate.