Abstract:
A fin diode structure and method of manufacturing the same is provided in present invention, which the structure includes a substrate, a doped well formed in the substrate, a plurality of fins of first conductivity type and a plurality of fins of second conductivity type protruding from the doped well, and a doped region of first conductivity type formed globally in the substrate between the fins of first conductivity type, the fins of second conductivity type, the shallow trench isolation and the doped well and connecting with the fins of first doped type and the fins of second doped type.
Abstract:
A fin diode structure and method of manufacturing the same is provided in present invention, which the structure includes a substrate, a doped well formed in the substrate, a plurality of fins of first conductivity type and a plurality of fins of second conductivity type protruding from the doped well, and a doped region of first conductivity type formed globally in the substrate between the fins of first conductivity type, the fins of second conductivity type, the shallow trench isolation and the doped well and connecting with the fins of first doped type and the fins of second doped type.
Abstract:
A semiconductor device of ESD protection includes a first P-type well in a substrate to receive a protected terminal and a first N-type well abutting the first P-type well in the substrate. A second P-type well abutting the first N-type well is in the substrate. A second N-type well abutting the second P-type well is in the substrate. A detective circuit device is formed on a surface of the substrate, having an input terminal to receive the protected terminal and an output terminal to provide a trigger voltage to the first N-type well. A first route structure is in the substrate, on a sidewall and a bottom of the first P-type well to connect to a bottom of the first N-type well. A second route structure is in the substrate, on sidewall and bottom of the second N-type well, to connect to a bottom of the second P-type well.
Abstract:
An electrostatic discharge (ESD) shielding semiconductor device and an ESD testing method thereof, the ESD shielding semiconductor device includes an integrated circuit, a seal ring and a conductive layer. The integrated circuit is disposed on a die, and the integrated circuit has a first region and a second region. The seal ring is disposed on the die to surround the integrated circuit. The conductive layer at least covers the first region, and which is electrically connected to the seal ring.
Abstract:
An electrostatic discharge (ESD) device includes a gate structure, disposed on a substrate. A drain doped region of a first conductive type is in the substrate, adjacent to a first side of the gate structure, wherein the drain doped region has a first impurity concentration. A first doped region of the first conductive type is disposed within the drain doped region and being at least distant from the gate structure by a distance. The first doped region has a second impurity concentration lower than the first impurity concentration.
Abstract:
A layout structure is provided. The layout structure includes a substrate, a gate conductive layer, a first doped region having a first conductivity, a second doped region having the first conductivity, and a third doped region having a second conductivity. The gate conductive layer is formed on the substrate. The first doped region the second doped region are formed in the substrate and located at two sides of the gate conductive layer. The third doped region is formed in the substrate and adjacent to the second doped region. The third doped region and the second doped region form a diode. The gate conductive layer, the first doped region, and the third doped region are connected to ground, and the second doped region is connected to an input/output pad.
Abstract:
A fin type ESD protection device includes at least one first fin, at least one second fin, and at least one gate structure. The first fin is disposed on a semiconductor substrate, and a source contact contacts the first fin. The second fin is disposed on the semiconductor substrate, and a drain contact contacts the second fin. The first fin and the second fin extend in a first direction respectively, and the first fin is separated from the second fin. The gate structure is disposed between the source contact and the drain contact. The first fin is separated from the drain contact, and the second fin is separated from the source contact.
Abstract:
A semiconductor structure suitable for ESD protection application is provided. The semiconductor structure includes a first well, a second well, a third well, a first fin, a second fin, an anode, a cathode and a first doping region. The first well and the second well are disposed in the third well. The first fin is disposed on the first well. The second fin is disposed on the second well. The anode is disposed on the first fin. The cathode is disposed on the second fin. The first doping region is disposed under the first fin, and separates the first fin from the first well. The first well, the second well, the first fin and the second fin have a first doping type. The third well and the first doping region have a second doping type.
Abstract:
A fin diode structure and method of manufacturing the same is provided in present invention, which the structure includes a substrate, a doped well formed in the substrate, a plurality of fins of first conductivity type and a plurality of fins of second conductivity type protruding from the doped well, and a doped region of first conductivity type formed globally in the substrate between the fins of first conductivity type, the fins of second conductivity type, the shallow trench isolation and the doped well and connecting with the fins of first doped type and the fins of second doped type.
Abstract:
An electrostatic discharge protection semiconductor device includes a substrate, a gate set positioned on the substrate, a source region and a drain region formed in the substrate respectively at two sides of the gate set, at least a first doped region formed in the drain region, and at least a second doped region formed in the substrate. The source region and the drain region include a first conductivity type, the first doped region and the second doped region include a second conductivity type, and the first conductivity and the second conductivity type are complementary to each other. The first doped region and the second doped region are electrically connected to each other.