Abstract:
A semiconductor structure includes a HV NMOS structure. The HV NMOS structure includes a source region, a drain region, a channel region, a gate dielectric, and a gate electrode. The source region and the drain region are separated from each other. The channel region is disposed between the source region and the drain region. The channel region has a channel direction from the source region toward the drain region. The gate dielectric is disposed on the channel region and on portions of the source region and the drain region. The gate electrode is disposed on the gate dielectric. The gate electrode includes a first portion of n-type doping and two second portions of p-type doping. The two second portions are disposed at two sides of the first portion. The two second portions have an extending direction perpendicular to the channel direction.
Abstract:
A method of forming a semiconductor device is provided including the following steps. A substrate having a first voltage area and a second voltage area is provided. A first oxide layer is formed in the first voltage area. The first oxide layer is removed to form a recess in the first voltage area. A shallow trench isolation (STI) structure is formed in the substrate, wherein a first portion of the STI structure is located in the first voltage area and a second portion of the STI structure is located in the second voltage area, a top surface of the STI structure is higher than the top surface of the substrate, and a bottom surface of the first portion of the STI structure in the first voltage area is lower than a bottom surface of the second portion of the STI structure in the second voltage area.
Abstract:
A metal-oxide semiconductor transistor includes a substrate, a gate insulating layer disposed on a surface of the substrate, and a metal gate disposed on the gate insulating layer, wherein at least one of the length or the width of the metal gate is greater than or equal to approximately 320 nanometers, and the metal gate has at least one plug hole. The metal-oxide semiconductor transistor further includes at least one insulating plug disposed in the plug hole and two diffusion regions disposed respectively at two sides of the metal gate in the substrate.
Abstract:
A method for forming a high voltage transistor is provided. First, a substrate having a top surface is provided, following by forming a thermal oxide layer on the substrate. At least a part of the thermal oxidation layer is removed to form a recess in the substrate, wherein a bottom surface of the recess is lower than the top surface of the substrate. A gate oxide layer is formed in the recess, then a gate structure is formed on the gate oxide layer. The method further includes forming a source/drain region in the substrate.
Abstract:
A semiconductor device and a method of fabricating the same, the semiconductor device includes a substrate, a first gate and a second gate. The first gate is disposed on the substrate and includes a first gate insulating layer, a polysilicon layer, a silicide layer and a protective layer stacked with each other on the substrate and a first spacer surrounds the first gate insulating layer, the polysilicon layer, the silicide layer and the protective layer. The second gate is disposed on the substrate and includes a second gate insulating layer, a work function metal layer and a conductive layer stacked with each other on the substrate, and a second spacer surrounds the second gate insulating layer, the work function metal layer and the conductive layer.
Abstract:
The present invention provides a high-voltage metal-oxide-semiconductor (HVMOS) transistor comprising a substrate, a gate dielectric layer, a gate electrode and a source and drain region. The gate dielectric layer is disposed on the substrate and includes a protruded portion and a recessed portion, wherein the protruded portion is disposed adjacent to two sides of the recessed portion and has a thickness greater than a thickness of the recessed portion. The gate electrode is disposed on the gate dielectric layer. Thus, the protruded portion of the gate dielectric layer can maintain a higher breakdown voltage, thereby keeping the current from leaking through the gate.
Abstract:
The present invention provides a high-voltage metal-oxide-semiconductor (HVMOS) transistor comprising a substrate, a gate dielectric layer, a gate electrode and a source and drain region. The gate dielectric layer is disposed on the substrate and includes a protruded portion and a recessed portion, wherein the protruded portion is disposed adjacent to two sides of the recessed portion and has a thickness greater than a thickness of the recessed portion. The gate electrode is disposed on the gate dielectric layer. Thus, the protruded portion of the gate dielectric layer can maintain a higher breakdown voltage, thereby keeping the current from leaking through the gate.
Abstract:
The present invention provides a high-voltage metal-oxide-semiconductor (HVMOS) transistor comprising a substrate, a gate dielectric layer, a gate electrode and a source and drain region. The gate dielectric layer is disposed on the substrate and includes a protruded portion and a recessed portion, wherein the protruded portion is disposed adjacent to two sides of the recessed portion and has a thickness greater than a thickness of the recessed portion. The gate electrode is disposed on the gate dielectric layer. Thus, the protruded portion of the gate dielectric layer can maintain a higher breakdown voltage, thereby keeping the current from leaking through the gate.
Abstract:
A transistor structure including a substrate, a gate dielectric layer, a gate, a first doped region, a second doped region, a first drift region, and a dummy gate is provided. The gate dielectric layer is located on the substrate. The gate dielectric layer includes first and second portions. The second portion is connected to the first portion. The thickness of the second portion is greater than the thickness of the first portion. The gate is located on the first and second portions. The first doped region and the second doped region are located in the substrate on two sides of the gate dielectric layer. The first drift region is located in the substrate on one side of the gate. The second doped region is located in the first drift region. The dummy gate is located on the second portion between the gate and the second doped region.
Abstract:
The invention provides a semiconductor structure, which comprises a first silicon substrate with a display region and a driving region defined thereon, a circuit layer located on the first silicon substrate, a plurality of light emitting elements located on the display region of the first silicon substrate, a driving chip located on the driving region of the first silicon substrate and electrically connected with the circuit layer, and a second silicon substrate located on the driving chip.