Dynamic Reconfiguration of Multi-core Processor

    公开(公告)号:US20190095216A1

    公开(公告)日:2019-03-28

    申请号:US16203819

    申请日:2018-11-29

    Abstract: A microprocessor includes a plurality of processing cores and a configuration register configured to indicate whether each of the plurality of processing cores is enabled or disabled. Each enabled one of the plurality of processing cores is configured to read the configuration register in a first instance to determine which of the plurality of processing cores is enabled or disabled and generate a respective configuration-related value based on the read of the configuration register in the first instance. The configuration register is updated to indicate that a previously enabled one of the plurality of processing cores is disabled. Each enabled one of the plurality of processing cores is configured to read the configuration register in a second instance to determine which of the plurality of processing cores is enabled or disabled and generate the respective configuration-related value based on the read of the configuration register in the second instance.

    Event-based apparatus and method for securing bios in a trusted computing system during execution

    公开(公告)号:US10049217B2

    公开(公告)日:2018-08-14

    申请号:US15380787

    申请日:2016-12-15

    Inventor: G. Glenn Henry

    Abstract: An apparatus is provided for protecting a basic input/output system (BIOS) in a computing system. The apparatus includes a BIOS read only memory (ROM), an event detector, and a tamper detector. The BIOS ROM has BIOS contents that are stored as plaintext, and an encrypted message digest, where the encrypted message digest comprises an encrypted version of a first message digest that corresponds to the BIOS contents, and where and the encrypted version is generated via a symmetric key algorithm and a key. The event detector is configured to generate a BIOS check interrupt that interrupts normal operation of the computing system upon the occurrence of an event, where the event includes one or more occurrences of a fuse array access. The tamper detector is operatively coupled to the BIOS ROM and is configured to access the BIOS contents and the encrypted message digest upon assertion of the BIOS check interrupt, and is configured to direct a microprocessor to generate a second message digest corresponding to the BIOS contents and a decrypted message digest corresponding to the encrypted message digest using the symmetric key algorithm and the key, and is configured to compare the second message digest with the decrypted message digest, and configured to preclude the operation of the microprocessor if the second message digest and the decrypted message digest are not equal. The microprocessor includes a dedicated crypto/hash unit disposed within execution logic, where the crypto/hash unit generates the second message digest and the decrypted message digest, and where the key is exclusively accessed by the crypto/hash unit. The microprocessor further has a random number generator disposed within the execution logic, where the random number generator generates a random number at completion of a current BIOS check, which is employed by the event detector to randomly set a number of occurrences of the event that are to occur before a following BIOS check.

    Event-based apparatus and method for securing bios in a trusted computing system during execution

    公开(公告)号:US09910991B2

    公开(公告)日:2018-03-06

    申请号:US15380661

    申请日:2016-12-15

    Inventor: G. Glenn Henry

    Abstract: An apparatus is provided for protecting a basic input/output system (BIOS) in a computing system. The apparatus includes a BIOS read only memory (ROM), an event detector, and a tamper detector. The BIOS ROM has BIOS contents that are stored as plaintext, and an encrypted message digest, where the encrypted message digest comprises an encrypted version of a first message digest that corresponds to the BIOS contents, and where and the encrypted version is generated via a symmetric key algorithm and a key. The event detector is configured to generate a BIOS check interrupt that interrupts normal operation of the computing system upon the occurrence of an event, where the event includes one or more occurrences of an operating system call. The tamper detector is operatively coupled to the BIOS ROM and is configured to access the BIOS contents and the encrypted message digest upon assertion of the BIOS check interrupt, and is configured to direct a microprocessor to generate a second message digest corresponding to the BIOS contents and a decrypted message digest corresponding to the encrypted message digest using the symmetric key algorithm and the key, and is configured to compare the second message digest with the decrypted message digest, and configured to preclude the operation of the microprocessor if the second message digest and the decrypted message digest are not equal. The microprocessor includes a dedicated crypto/hash unit disposed within execution logic, where the crypto/hash unit generates the second message digest and the decrypted message digest, and where the key is exclusively accessed by the crypto/hash unit. The microprocessor further has a random number generator disposed within the execution logic, where the random number generator generates a random number at completion of a current BIOS check, which is employed by the event detector to randomly set a number of occurrences of the event that are to occur before a following BIOS check.

    Event-based apparatus and method for securing bios in a trusted computing system during execution

    公开(公告)号:US09836609B2

    公开(公告)日:2017-12-05

    申请号:US15379974

    申请日:2016-12-15

    Inventor: G. Glenn Henry

    Abstract: An apparatus is provided for protecting a basic input/output system (BIOS) in a computing system. The apparatus includes a BIOS read only memory (ROM), an event detector, and a tamper detector. The BIOS ROM has BIOS contents that are stored as plaintext, and an encrypted message digest, where the encrypted message digest comprises an encrypted version of a first message digest that corresponds to the BIOS contents, and where and the encrypted version is generated via a symmetric key algorithm and a key. The event detector is configured to generate a BIOS check interrupt that interrupts normal operation of the computing system upon the occurrence of an event, where the event includes one or more occurrences of a hard disk access. The tamper detector is operatively coupled to the BIOS ROM and is configured to access the BIOS contents and the encrypted message digest upon assertion of the BIOS check interrupt, and is configured to direct a microprocessor to generate a second message digest corresponding to the BIOS contents and a decrypted message digest corresponding to the encrypted message digest using the symmetric key algorithm and the key, and is configured to compare the second message digest with the decrypted message digest, and configured to preclude the operation of the microprocessor if the second message digest and the decrypted message digest are not equal. The microprocessor includes a dedicated crypto/hash unit disposed within execution logic, where the crypto/hash unit generates the second message digest and the decrypted message digest, and where the key is exclusively accessed by the crypto/hash unit. The microprocessor further has a random number generator disposed within the execution logic, where the random number generator generates a random number at completion of a current BIOS check, which is employed by the event detector to randomly set a number of occurrences of the event that are to occur before a following BIOS check.

    Programmable secure bios mechanism in a trusted computing system

    公开(公告)号:US09779242B2

    公开(公告)日:2017-10-03

    申请号:US15338586

    申请日:2016-10-31

    Inventor: G. Glenn Henry

    CPC classification number: G06F21/572 G06F2221/2139 H04L9/0631 H04L9/0643

    Abstract: An apparatus is provided for protecting a basic input/output system (BIOS) in a computing system. The apparatus includes a BIOS read only memory (ROM), a tamper detector, a random number generator, and a JTAG control chain. The BIOS ROM includes BIOS contents stored as plaintext, and an encrypted message digest, where the encrypted message digest has an encrypted version of a first message digest that corresponds to the BIOS contents. The tamper detector is operatively coupled to the BIOS ROM, and is configured to generate a BIOS check interrupt at a combination of prescribed intervals and event occurrences, and is configured to access the BIOS contents and the encrypted message digest upon assertion of the BIOS check interrupt, and is configured to direct a microprocessor to generate a second message digest corresponding to the BIOS contents and a decrypted message digest corresponding to the encrypted message digest, and is configured to compare the second message digest with the decrypted message digest, and is configured to preclude the operation of the microprocessor if the second message digest and the decrypted message digest are not equal. The random number generator disposed within the microprocessor, and generates a random number at completion of a current BIOS check, which is employed to set a following prescribed interval, whereby the prescribed intervals are randomly varied. The JTAG control chain is configured to program the combination of prescribed intervals and event occurrences within tamper detection microcode storage.

    Processor that recovers from excessive approximate computing error
    30.
    发明授权
    Processor that recovers from excessive approximate computing error 有权
    处理器从过大的近似计算错误中恢复

    公开(公告)号:US09588845B2

    公开(公告)日:2017-03-07

    申请号:US14522520

    申请日:2014-10-23

    Abstract: A processor includes a storage configured to receive a snapshot of a state of the processor prior to performing a set of computations in an approximating manner. The processor also includes an indicator that indicates an amount of error accumulated while the set of computations is performed in the approximating manner. When the processor detects that the amount of error accumulated has exceeded an error bound, the processor is configured to restore the state of the processor to the snapshot from the storage.

    Abstract translation: 处理器包括被配置为在以近似方式执行一组计算之前接收处理器的状态的快照的存储器。 处理器还包括指示器,其指示在以近似方式执行计算集合时累积的误差量。 当处理器检测到累积的错误量超过了错误限制时,处理器被配置为将处理器的状态从存储恢复到快照。

Patent Agency Ranking