摘要:
A semiconductor light emitting device includes an active layer, an electrode formed above the active layer, a current spreading layer formed between the active layer and the electrode, having n-type conductivity, having a larger bandgap energy than the active layer, and spreading electrons injected from the electrode in the plane of the active layer, and a surface processed layer formed on the current spreading layer, having a larger bandgap energy than the active layer, and having an uneven surface region with a large number of concave-convex structures. The electrode is not formed on the uneven surface region. The conduction band edge energy from the Fermi level of the surface processed layer is higher than that of the current spreading layer.
摘要:
The present invention is intended to provide a semiconductor optoelectric device with high luminescent efficiency and a method of manufacturing the same. The semiconductor optoelectric device 18 according to the present invention is constructed by depositing compound-semiconductor layers 13 and 14 on a monocrystalline substrate 11 of a hexagonal close-packed structure. The shape of the monocrystalline substrate 11 is a parallelogram. Individual sides of the parallelogram are parallel to a orientation. As the monocrystalline substrate, sapphire, zinc oxide or silicon carbide may be used. As the compound-semiconductor layers, an n-type GaN layer 13 and p-type GaN layer 14 may be used.
摘要:
A memory cell in a nonvolatile semiconductor memory device includes a tunneling insulating film, a floating gate electrode made of a Si containing conductive material, an inter-electrode insulating film made of rare-earth oxide, rare-earth nitride or rare-earth oxynitride, a control gate electrode, and a metal silicide film formed between the floating gate electrode and the inter-electrode insulating film.
摘要:
A method of manufacturing a semiconductor device comprises a step of depositing a crystalline insulating layer oriented in a predetermined crystal face orientation by epitaxial growth on an amorphous semiconductor layer, a step of depositing a second amorphous semiconductor layer on the crystalline insulating layer, a step of growing said first and second semiconductor layers into a polycrystal or single crystal layer in a solid phase, using said crystalline insulating film as core, and a step of forming a functional element containing said first and second semiconductor layer.
摘要:
A semiconductor device includes a first semiconductor layer formed of first semiconductor, a second semiconductor layer formed on the first semiconductor layer and formed of second semiconductor of a group different from a group to which the first semiconductor belongs, and a third semiconductor layer formed between the first and second semiconductor layers, the third semiconductor layer being one of a layer formed of third semiconductor of the same group as the first semiconductor and having an impurity concentration higher than the first semiconductor layer and a layer formed of fourth semiconductor of the same group as the second semiconductor and having an impurity concentration higher than the second semiconductor layer.
摘要:
A compound semiconductor device with an improved internal current blocking structure. The semiconductor device includes an n-clad layer of II-VI compound semiconductor, a p-clad layer of II-VI compound semiconductor, an active layer of II-VI compound semiconductor between the n-clad and p-clad layers, a very thin current blocking layer of n-type II-VI compound semiconductor on the p-clad layer and providing an opening, a p-contact layer of p-type II-VI compound semiconductor on the p-clad layer and the current blocking layer at the opening, and a p-side electrode on the p-contact layer.
摘要:
A gain waveguide type semiconductor laser oscillating visible light has an N type GaAs substrate of, and a double-heterostructure provided above the substrate to include an InGap active layer, and first and second cladding layers sandwiching the active layer. The first cladding layer consists of N type InGaAlP, whereas the second cladding layer consists of P type InGaAlP. A P type InGaP layer is formed as an intermediate band-gap layer on the second cladding layer. An N type GaAs current-blocking layer is formed on the intermediate band-gap layer, and has an elongated waveguide opening. A P type GaAs contact layer is formed to cover the current-blocking layer and the opening. The intermediate band-gap layer has a carrier concentration, in a layer portion being in contact with the opening, high enough to cause a current injected in the oscillation mode to concentrate on the layer portion and has a carrier density, in the remaining layer portion, low enough to suppress or prevent the injected current from spreading thereinto. The layer portion may be formed by additionally doping a selected impurity into the intermediate gap layer by using a presently available impurity diffusion/injection technique.
摘要:
According to one embodiment, a semiconductor light emitting element includes a light emitting layer, a current spreading layer of a first conductivity type, and a pad electrode. The light emitting layer is capable of emitting light. The current spreading layer has a first surface and a second surface. The light emitting layer is disposed on a side of the first surface. A light extraction surface having convex structures of triangle cross-sectional shape and a flat surface which is a crystal growth plane are included in the second surface. The pad electrode is provided on the flat surface. One base angle of the convex structure is 90 degrees or more.
摘要:
According to one embodiment, a semiconductor light emitting device includes a substrate, a first electrode, a first conductivity type layer, a light emitting layer, a second conductivity type layer and a second electrode. The first conductivity type layer includes a first contact layer, a window layer having a lower impurity concentration than the first contact layer and a first cladding layer. The second conductivity type layer includes a second cladding layer, a current spreading layer and a second contact layer. The second electrode includes a narrow-line region on the second contact layer and a pad region electrically connected to the narrow-line region. Band gap energies of the first contact and window layers are larger than that of the light emitting layer. The first contact layer is provided selectively between the window layer and the first electrode and without overlapping the second contact layer as viewed from above.
摘要:
According to one embodiment, a semiconductor light emitting element includes a light emitting layer, a current spreading layer of a first conductivity type, and a pad electrode. The light emitting layer is capable of emitting light. The current spreading layer has a first surface and a second surface. The light emitting layer is disposed on a side of the first surface. A light extraction surface having convex structures of triangle cross-sectional shape and a flat surface which is a crystal growth plane are included in the second surface. The pad electrode is provided on the flat surface. One base angle of the convex structure is 90 degrees or more.