Abstract:
A methanol production system of the present disclosure includes: a reformer including a reaction furnace configured to reform methane in a raw material gas to produce a reformed gas containing CO and H2; a reduced-gas generator configured to reduce CO2 to produce a reduced gas containing CO; and a methanol-containing gas generator configured to produce a methanol-containing gas which contains methanol from a reformed gas produced in the reaction furnace and a reduced gas produced in the reduced-gas generator.
Abstract:
A process for producing diazomethane of Formula 1 (CH2N2), with an automated apparatus is described. A stock solution of N-methyl-N-nitroso amine in an organic solvent is continuously flown and mixed with an aqueous inorganic base at a T-mixer to form a mixture. Then it is passed through a capillary micro reactor at a temperature in a range of 20 to 30° C. to form diazomethane. The mixture is separated into an aqueous layer and an organic layer using a continuous flow micro-separator. The organic layer has 0.1-0.4 M diazomethane. The organic layer is reacted with a carboxylic acid, phenol, an alkyne, an anhydride, a carboxyl metal organic framework (MOF), or MOF coated cotton to form a corresponding ester, a pyrazole, an ether, a diazo ketone, a stable carboxyl MOF or a stable MOF coated cotton fiber.
Abstract:
A method of separating a plurality of particles (14) from a portion of fluid, comprising directing the plurality of particles (14) into a microchannel (12). A first portion (16) of particles (14) is focused into an equilibrium position in the microchannel (12). The focused first portion (16) is directed into a first outlet (18) aligned with the equilibrium position. A portion of the fluid is directed into one or more outlets (20, 22). A microfluidic device (10) for separating a plurality of particles (14) from a portion of fluid, comprising a microchannel (12) having a first aspect ratio and a length L, thereby focusing the particles (14) directed therein into an equilibrium position in the microchannel, wherein at least a first portion (16) of the particles (14) focuses at distance X from a beginning of the microchannel (12). A first outlet (18) disposed after distance X and aligned with the equilibrium position to receive at least the first portion (16) of the particles (14) after the first portion (16) focuses into an equilibrium position in the microchannel (12). At least a second outlet (20) for receiving a second portion of the particles (14) before the second portion focuses into an equilibrium position.
Abstract:
A method of using a fluidics apparatus for lysing a cell. In the method, the cell is placed in a fluid sample contacting a substrate surface. The method further includes providing surface acoustic waves (SAWs) at the substrate surface, causing cell lyses.
Abstract:
A fluidics apparatus is disclosed for manipulation of at least one fluid sample, typically in the form of a droplet. The apparatus has a substrate surface with a sample manipulation zone for location of the fluid sample. A transducer arrangement such as an interdigitated electrode structure on a piezoelectric body provides surface acoustic waves at the substrate surface for manipulation of the fluid sample. The substrate surface has an arrangement of surface acoustic wave scattering elements forming a phononic crystal structure for affecting the transmission, distribution and/or behavior of surface acoustic waves at the substrate surface. Also disclosed is a method for lysing a cell. In this method, the cell is comprised in a fluid sample contacting a substrate surface, the method comprising providing surface acoustic waves at the substrate surface, such that the cell lyses.
Abstract:
In various implementations, methanol is produced using a (CO+H2) containing synthesis gas produced from a combined POX plus EHTR or a combined ATR plus EHTR at a pressure of 70 bar to 100 bar at the correct stoichiometric composition for methanol synthesis so that no feed gas compressor is required for the feed to the methanol synthesis reactor loop.
Abstract translation:在各种实施方案中,使用由组合的POX加EHTR或组合的ATR加EHTR产生的(CO + H 2)的合成气在70巴至100巴的压力下以合适的化学计量组成用于甲醇合成来生产甲醇,因此不存在 进料气压缩机是进料到甲醇合成反应器回路所必需的。
Abstract:
The disclosed technology relates to an apparatus, comprising: at least one microchannel, the microchannel comprising at least one heat transfer wall; a porous thermally conductive support in the microchannel in contact with the heat transfer wall; a catalyst or a sorption medium supported by the porous support; and a heat source and/or heat sink in thermal contact with the heat transfer wall.
Abstract:
This invention relates to the miniaturization of radiosyntheses onto microfabricated devices, and in particular to use of microfabricated devices for radiosynthesis, isolation, and analysis of radiotracers for use in Positron Emission Tomography (PET).
Abstract:
An automated HPLC-based quality control system to perform quality control testing on a radiopharmaceutical solution shortly after synthesis. An automated HPLC-based quality control system makes efficient use of sample volume and is compatible with a variety of radioisotopes and radiopharmaceutical compounds. In several embodiments, the automated nature of an automated HPLC-based quality control system allows for quality control tests to be conducted quickly and with minimal impact on user workflow. When used as part of an integrated PET biomarker radiopharmaceutical production system, the present general inventive concept permits a manufacturer to produce product and conduct quality control tests with lower per dose costs and shorter testing times.
Abstract:
Macro- and microfluidic devices and related technologies, and chemical processes using such devices. More specifically, the devices may be used for a fully automated synthesis of radioactive compounds for imaging, such as by positron emission tomography (PET), in an efficient, compact and safe to the operator manner. In particular, embodiments of the present invention relate to an automated, multi-run, microfluidic instrument for the multi-step synthesis of radiopharmaceuticals, such as PET probes, comprising a remote shielded mini-cell containing radiation-handing components.