摘要:
Disclosed are methods of preparing monoalkyl Group VA metal dihalide compounds in high yield and high purity by the reaction of a Group VA metal trihalide with an organo lithium reagent or a compound of the formula RnM1X3nulln , where R is an alkyl, M1 is a Group IIIA metal, X is a halogen and n is an integer fro 1 to 3. Such monoalkyl Group VA metal dihalide compounds are substantially free of oxygenated impurities, ethereal solvents and metallic impurities. Monoalkyl Group VA metal dihydride compounds can be easily produced in high yield and high purity by reducing such monoalkyl Group VA metal dihalide compounds.
摘要翻译:公开了通过VA族金属三卤化物与有机锂试剂或式RnM 1 X 3-n的化合物的反应制备高产率和高纯度的单烷基基团VA金属二卤化物化合物的方法,其中R是烷基 ,M 1是IIIA族金属,X是卤素,n是1至3的整数。这种单烷基基团VA金属二卤化物基本上不含氧化杂质,醚类溶剂和金属杂质。 通过还原这种单烷基VA族金属二卤化物化合物,可以容易地以高产率和高纯度制备单烷基基团VA金属二氢化合物。
摘要:
A method of forming a film on a substrate using Group IIIA metal complexes. The complexes and methods are particularly suitable for the preparation of semiconductor structures using chemical vapor deposition techniques and systems.
摘要:
TBHy is demonstrated as an efficient and a less carbon-containing N precursor for the growth of high-quality InGaAsN by MOCVD at lower growth temperatures. The photovoltaic characteristics of 1.20 eV InGaAsN solar cells, such as open-circuit voltage, short-circuit current, fill factor and efficiency are improved significantly by using TBHy compared to using DMHy. This demonstration can also be applied to other InGaAsN-based optoelectronic and electronic devices. Therefore, this invention is extremely important to expedite the demonstration of next-generation prototype products such as 1.3 nullm-InGaAsN-epitaxial VCSELs for high-speed optical communications, low-power Npn InGaP/InGaAsN/GaAs HBTs and InGaP/AlGaAs/InGaAsN HEMTs for wireless applications, and high-efficiency multiple-junction InGaP/GaAs/InGaAsN/Ge solar cells for space power systems.
摘要:
An electro-optic system 10 is described which comprises an infrared sensor 12 and a processing unit 14 protected by a protective infrared transmissive window 16. The window 16 comprises a substrate layer 18 which may comprise gallium arsenide, zinc selenide, zinc sulfide or germanium. A protective layer 22 of gallium phosphide is formed outwardly from the substrate layer 18. An anti-reflective coating 20 is formed inwardly from substrate layer 18 and an outward anti-reflective coating 26 is formed outwardly from protective layer 22. The incorporation of protective layer 22 allows for excellent impact and wear resistance without interfering with the optical characteristics of the protective window 16.
摘要:
A new compound, tertiarybutylbis-(dimethylamino)phosphine, ((CH.sub.3).sub.3 C)((CH.sub.3).sub.2 N).sub.2 P, is used as a precursor in forming phosphorus-containing semiconductor material by chemical vapor deposition. Tertiarybutylbis-(dimethylamino)phosphine is prepared by reacting a phosphorus trihalide, PX.sub.3, with the tertiarybutyl Grignard reagent ((CH.sub.3).sub.3 C)MgX. The resultant product is treated with lithium dimethylamide reagent LiN(CH.sub.3).sub.2. Tertiarybutylbis-(dimethylamino)phosphine is then recovered from the reaction mixture. Phosphorus-containing semiconductor materials are formed by chemical vapor deposition by means of bubbling a carrier gas through the new compound and then transporting the ((CH.sub.3).sub.3 C)((CH.sub.3).sub.2 N).sub.2 P with the carrier gas to a heated substrate. Additional elements from groups II, III, V, and VI of the periodic table are then deposited on the substrate to form the Phosphorus-containing semiconductor materials.
摘要:
A substrate holder employed for MOCVD and supporting a wafer on which crystal growth proceeds includes a molybdenum holder body, a GaAs polycrystalline film with a flat surface grown on a part of the surface of the molybdenum holder body where the wafer is absent, and an InP polycrystalline film grown on the GaAs polycrystalline film. Each of the polycrystalline films is grown to a thickness of 0.3 .mu.m or more at a temperature higher than the epitaxial growth temperature of 575.degree. C. During the MOCVD process, the emissivity of the molybdenum substrate holder is stable at a value near the emissivity of the wafer on the substrate holder and, therefore, the decomposition ratio of PH.sub.3 gas on the substrate holder is stable at a value near the decomposition ratio on the wafer, whereby any variation of the incorporation ratio of P atoms in the grown InGaAsP, i.e., a variation of the composition of the InGaAsP, is reduced and run-to-run variations of the composition of the grown crystal are reduced.
摘要:
Alkyl arsines are made by a reaction of gaseous arsine and the corresponding gaseous olefin in contact with at least one Bronsted acid catalyst. Products produced thereby are mono- and di-substituted arsines, e.g. alkyl and di-alkyl arsines, which contain substantially no metallic or oxygenating impurities.
摘要:
The present invention addresses the use of metalorganic amines as metallic donor source compounds in reactive deposition applications. More specifically, the present invention addresses the use of the amino-substituted metallic donor source compounds M(NR.sub.2).sub.3-x H.sub.x, where R is organic, alkyl or fluoroalkyl, and x is less than or equal to 2, and M=As, Sb or P, in processes requiring deposition of the corresponding element. These uses include a number of different processes; the metalorganic vapor phase epitaxy of compound semiconductor material such as GaAs, InP, AlGaAs, etc.; doping of SiO.sub.2 or borosilicate based glasses to enhance the reflow properties of the glass; in-situ n-type doping of silicon epitaxial material; sourcing of arsenic or phosphorus for ion implantation; chemical beam epitaxy (or MOMBE); and diffusion doping into electronic materials such as silicon dioxide, silicon and polycrystalline silcon. These types of materials generally have high volatilities, low toxicities, labile metal-ligand bonds, and stable decomposition products.Specifically, the use of tris(dialkylamino) arsenic (As(NR.sub.2).sub.3) as a substitute for arsine in the manufacture of silicon integrated circuits, Group III-V compound semiconductors, optoelectronics and other electronic devices has been identified.
摘要:
A process for the formation of a functional deposited film containing atoms belonging to the group III and V of the peridoical table as the main constituent atoms by introducing, into a film forming space for forming a deposited film on a substrate disposed therein, a group III compound (1) and a group IV compound (2) as the film-forming raw material and, if required, a compound (3) containing an element capable of controlling valence electrons for the deposited film as the constituent element each in a gaseous state, or in a state where at least one of such compounds is previously activated in an activation space disposed separately from the film forming space, while forming hydrogen atoms in excited state which cause chemical reaction with at least one of the compounds (1), (2) and (3) in the gaseous state or in the activated state in an activation space different from the film forming space and introducing them into the film-forming space, thereby forming the functional deposited film on the substrate, wherein the hydrogen atoms in excited state are formed from a hydrogen gas or a gas mixture composed of a hydrogen gas and a rare gas by means of a microwave plasma generated in a plasma generation chamber disposed in a cavity resonator integrated with two impedance matching circuits in a microwave circuit and the excited state of the hydrogen atom is controlled.
摘要:
In a vapor deposition process (e.g. MOCVD) for producing an arsenic-containing film on a substrate by thermally decomposing at least a vaporous organo arsenic compound upon a heated substrate, the improvement wherein the organo arsenic compound consists essentially of a C.sub.1 to C.sub.3 monoalkylarsine carried to the heated substrate by means of a flow of an inert carrier gas.