Abstract:
An electronic component is disclosed including a plurality of semiconductor packages soldered together in a side-by-side configuration. The packages are batch processed on a substrate panel. The panel includes a plurality of through-holes drilled through the panel and subsequently filled with metal such as copper or gold. These filled through-holes lie along the cut line between adjacent packages so that, upon singulation, the filled through holes are cut and a portion of the filled through-holes are exposed at the side edges of the singulated packages. These exposed portions of the filled through-holes form vertical surface mount technology (SMT) pads. After the semiconductor packages are singulated and the SMT pads are defined in the side edges, SMT is used to solder the SMT pads of a first semiconductor package to the respective SMT pads of a second semiconductor package to structurally and electrically couple the two packages together side-by-side.
Abstract:
Electronic Circuit Building Blocks are mechanically connected to each other to form larger circuit boards using a mechanical bridge connector. The Electronic Circuit Building Blocks include female interlocking elements formed on its edges, and the mechanical bridge connector includes male interlocking elements. Half parts of the male interlocking elements of the mechanical bridge connector are inserted into the corresponding female interlocking elements of the Electronic Circuit Building Blocks from one side of the circuit board. The Electronic Circuit Building Blocks include through-holes for mounting through-hole components and/or surface-mount pads for mounting surface-mount components. The Electronic Circuit Building Blocks also include traces interconnecting two or more of the through-hole components and the surface-mount components.
Abstract:
In Electronics, there exists three distinctive areas namely, discrete components or devices, circuits, and systems. A circuit is built from devices and a system is built from circuits. This invention aims at reducing the implementation of electronic systems down to just three steps namely, systems design, printed-circuit-board planar assembly, and systems test when-as a plurality of Universal Systems Printed-Circuit Blocks of pre-defined sizes is used. Each of said Universal Systems Printed-Circuit Blocks being usable and reusable for prototypes and production is built from a printed circuit board having thereon a functional circuit and a variety of circuit patterns and interconnection structures such that, any of said Blocks, when joined together with other Blocks on the same plane by standard connectors or electrically conductive compounds to form a systems board, can send and receive signals and voltages to and from any other Blocks.
Abstract:
In a method for fabricating a printed circuit board on a doubly contoured or hemispherical substrate such as a radome, a coherent light source is used to form a plurality of elements of a predetermined pattern on the surface of the substrate. The substrate includes a bottom layer and a metallized layer. At least a first element of the pattern is formed by ablating the element into a resist coating or ablating the element into the metallized layer with the coherent light source. The coherent light source preferably includes an excimer laser. The substrate is then displaced relative to the coherent light source until all the elements of the predetermined pattern are formed over the entire surface of the substrate. When the pattern is ablated into the resist material, an etching technique is used to remove portions of the metallized layer from the substrate.
Abstract:
A method of making a printed circuit board and a printed circuit board including a plurality of plastic substrate parts having one or more first substrate parts each having at least one coupling means, and one or more second substrate parts each having at least one receiving means to receive the coupling mean. At least one of the plurality of plastic substrate parts is formed with a further structural element, and at least two of the plurality of plastic substrate parts are connected to each other through the at least one coupling means and the at least one receiving means. The connected substrate parts include a circuit.
Abstract:
The present invention provides a three-dimensional substrate having a different shape than the conventional circuit substrate when a plurality of components are combined to form an electronic circuit. In addition, an electronic device is provided from the three-dimensional substrate. The three-dimensional substrate forms a component forming the three-dimensional structure by three-dimensionally forming the electronic circuit. The component includes at least one electronic component and an electric connection structure for electrically connecting the electronic component with the outside the component. When a plurality of components are combined, the electronic device having the three-dimensional shape having a different shape than the component is formed. The present invention provides the three-dimensional substrate capable of being designed by the shape of the substrate itself.
Abstract:
A method of forming an interconnect substrate includes providing at least two unit cells, arranging the unit cells to form a desired circuit pattern, and joining the unit cells to form the interconnect substrate having the desired circuit pattern. A circuit substrate, has a desired circuit pattern on a substrate, the substrate made up of at least two unit cells having conductive lines electrically connected together.
Abstract:
Circuit design assemblies, referred to herein as a “SpinBoard” and “SpinConnector” assemblies, are disclosed. The assemblies may include any of a variety of advantageous structures, including for example a board with a grid defining circuit point positions, and SpinConnector structures for building circuits. The disclosed SpinConnector structures may include advantageous features such as pin and plate structures that allow building fixed or articulating connector chains, and improved contact structures for conductive contact with electronic components. Software for designing the provided assemblies is also disclosed.
Abstract:
An apparatus and method of providing an electrical component interface is disclosed. For one embodiment, the electrical component interface includes an electrical component adapter. The electrical component adapter includes an electronic component solder pattern for receiving and allowing attachment of an electrical component. An adhesive backing is adjacent a surface of the electrical component adapter. The adhesive backing provides attachment of the electrical component adapter to a second surface.
Abstract:
A method of forming an interconnect substrate includes providing at least two unit cells, arranging the unit cells to form a desired circuit pattern, and joining the unit cells to form the interconnect substrate having the desired circuit pattern. A circuit substrate, has a desired circuit pattern on a substrate, the substrate made up of at least two unit cells having conductive lines electrically connected together.