Method for producing noble metal nanocomposites

    公开(公告)号:US10106895B2

    公开(公告)日:2018-10-23

    申请号:US15474760

    申请日:2017-03-30

    Abstract: The method for producing noble metal nanocomposites involves reducing noble metal ions (Ag, Au and Pt) on graphene oxide (GO) or carbon nanotubes (CNT) by using Artocarpus integer leaves extract as a reducing agent. As synthesized MNPs/GO and MNPs/CNT composites have been characterized using X-ray diffraction (XRD), transmission electron microscope (TEM) imaging, and energy dispersive X-ray spectroscopy (EDX). The TEM images of prepared materials showed that the nanocomposites were 1-30 nm in size with spherical nanoparticles embedded on the surface of GO and CNT. This synthetic route is easy and rapid for preparing a variety of nanocomposites. The method avoids use of toxic chemicals, and the prepared nanocomposites can be used for biosensor, fuel cell, and biomedical applications.

    Method for depositing a metal onto a porous carbon layer

    公开(公告)号:US09828678B2

    公开(公告)日:2017-11-28

    申请号:US13497115

    申请日:2010-09-20

    Abstract: The invention relates to a method for depositing a metal M1 onto a carbon layer, as well as to a method for manufacturing an electrode for fuel cells and to a method for manufacturing a fuel cell. The method for depositing a metal M1 onto a porous carbon layer according to the invention includes a step of depositing said metal M1 by means of the electrochemical reduction of an electrolytic solution of a salt of the metal M1, and, prior to said step of depositing the metal M1 by means of electrochemical reduction, a step of depositing a metal M2 by means of chemical reduction using a reducing gas of a salt of the metal M2, the thermodynamic equilibrium potential between the ionic form of the salt of M2 and M2, Eeqionic form of the salt of M2/M2 being greater than the thermodynamic equilibrium potential between the ionic form of the salt of M1 and M1, Eeqionic form of the salt of M1/M1. The invention can be used, in particular, in the field of fuel cells.

    PLATING BATH COMPOSITION AND METHOD FOR ELECTROLESS PLATING OF PALLADIUM

    公开(公告)号:US20170321327A1

    公开(公告)日:2017-11-09

    申请号:US15522321

    申请日:2015-12-17

    CPC classification number: C23C18/44 C23C18/1646

    Abstract: The present invention relates to an aqueous plating bath composition and a method for depositing a palladium layer by electroless plating onto a substrate. The aqueous plating bath composition according to the present invention comprises a source for palladium ions, a reducing agent for palladium ions and an aldehyde compound. The aqueous plating bath composition has an increased deposition rate for palladium while maintaining bath stability. The aqueous plating bath composition has also a prolonged life time. The aldehyde compounds of the present invention allow for adjusting the deposition rate to a constant range over the bath life time and for electrolessly depositing palladium layers at lower temperatures. The aldehyde compounds of the present invention activate electroless palladium plating baths having a low deposition rate and reactivate aged electroless palladium plating baths.

Patent Agency Ranking