Vertical pillar-type field effect transistor and method

    公开(公告)号:US10158021B2

    公开(公告)日:2018-12-18

    申请号:US15873935

    申请日:2018-01-18

    Abstract: Disclosed is a method of forming a vertical pillar-type field effect transistor (FET). One or more semiconductor pillars are formed by epitaxial deposition in one or more openings, respectively, that extend through a first dielectric layer and that have high aspect ratios in two directions. The first dielectric layer is etched back and the following components are formed laterally surrounding the semiconductor pillar(s): a first source/drain region above and adjacent to the first dielectric layer, a second dielectric layer on the first source/drain region, a gate on the second dielectric layer and a gate cap on the gate. The gate cap extends over the top surface(s) of the semiconductor pillar(s). A recess is formed in the gate cap to expose at least the top surface(s) of the semiconductor pillar(s) and a second source/drain region is formed within the recess. Also disclosed is the vertical pillar-type FET structure.

    INTEGRATION OF VERTICAL-TRANSPORT TRANSISTORS AND HIGH-VOLTAGE TRANSISTORS

    公开(公告)号:US20180342507A1

    公开(公告)日:2018-11-29

    申请号:US15604932

    申请日:2017-05-25

    Abstract: Methods and structures that include a vertical-transport field-effect transistor. A first section of a dielectric layer is deposited on a first device region of a substrate and a second section of the dielectric layer is deposited on a second device region of the substrate. A gate stack is deposited on the first device region and the second device region. The gate stack is patterned to define a first gate electrode of the vertical-transport field-effect transistor on the first section of the dielectric layer and a second gate electrode of a high-voltage field-effect transistor on the second section of the dielectric layer. The first section of the dielectric layer is a spacer layer arranged between the first gate electrode and the first device region. The second section of the dielectric layer is a portion of a gate dielectric arranged between the second gate electrode and the second device region.

    Etch-resistant spacer formation on gate structure

    公开(公告)号:US10109722B2

    公开(公告)日:2018-10-23

    申请号:US15447210

    申请日:2017-03-02

    Abstract: The disclosure relates to methods of forming etch-resistant spacers in an integrated circuit (IC) structure. Methods according to the disclosure can include: forming a mask on an upper surface of a gate structure positioned over a substrate; forming a spacer material on the substrate, the mask, and exposed sidewalls of the gate structure; forming a separation layer over the substrate and laterally abutting the spacer material to a predetermined height, such that an exposed portion of the spacer material is positioned above an upper surface of the separation layer and at least partially in contact with the mask; and implanting a dopant into the exposed portion of the spacer material to yield a dopant-implanted region within the spacer material, wherein the dopant-implanted region of the spacer material has a greater etch resistivity than a remainder of the spacer material.

    Width adjustment of stacked nanowires

    公开(公告)号:US10069015B2

    公开(公告)日:2018-09-04

    申请号:US15276372

    申请日:2016-09-26

    Abstract: In one aspect, a method of forming a semiconductor device includes the steps of: forming an alternating series of sacrificial/active layers on a wafer and patterning it into at least one nano device stack; forming a dummy gate on the nano device stack; patterning at least one upper active layer in the nano device stack to remove all but a portion of the at least one upper active layer beneath the dummy gate; forming spacers on opposite sides of the dummy gate covering the at least one upper active layer that has been patterned; forming source and drain regions on opposite sides of the nano device stack, wherein the at least one upper active layer is separated from the source and drain regions by the spacers; and replacing the dummy gate with a replacement gate. A masking process is also provided to tailor the effective device width of select devices.

Patent Agency Ranking