Abstract:
The present solution is directed to a measuring system and a method for determining spectrometric measurement results with high accuracy. The spectrometric measuring system, comprises a radiation source, an entrance slit, a dispersion element, and a detector with detector elements arranged in a linear or matrix-shaped manner in one or more planes. The detector has an even distribution of at least two different wavelength-selective filters on its detector elements. While detectors from photography and video applications are used for this purpose, use of the invention is not limited to the visible spectral region. Further, color filters on the pixels may be omitted or modified in the manufacturing process. It is also possible to use other types of detectors in which the wavelength-selective filters and associated detectors are arranged one behind each other in a plurality of planes in which complete color information is available to each individual picture point.
Abstract:
There is provided a microscope device comprising: means for creating a collimated beam of light collected from a sample and comprising at least a first spectral range and a second spectral range, means for separating the collimated beam into a first beam containing a higher percentage of light of the first spectral range than light of the second spectral range and a second beam containing a lower percentage of light of the first spectral range than light of the second spectral range, means for reflecting the first beam, means for reflecting the second beam, means for combining the first beam and the second beam, a detector, and means for imaging the combined first and second beam onto the detector in order to create an image of the sample on the detector, wherein the means for reflecting the first beam and the means for reflecting the second beam are arranged in such a manner that the image created by the first beam and the image created by the second beam are shifted relative to each other on the detector, wherein the means for reflecting the first beam is adapted to invert handedness of the first beam, and wherein the means for reflecting the second beam is adapted to preserve handedness of the second beam.
Abstract:
The present invention is directed to a spectrometer in which the electrical and optical components are connected to one another in a compact construction. A minimal expenditure on assembly and adjustment is achieved through a small quantity of individual parts. The compact spectrometer comprises an entrance slit, an imaging grating, one or more detector elements in rows or matrices, and elements of a controlling and evaluating unit. The detector elements and the entrance slit are arranged on a shared support, the elements of the controlling and evaluating unit being arranged on the free surfaces of the support. The entrance slit and the detector elements and the imaging spherical grating recessed into the spectrometer housing are arranged symmetric to an imaginary center axis of the support. Due to its compact size and the minimized expenditure on adjustment and assembly for its manufacture, the inventive spectrometer has numerous applications.
Abstract:
Exemplary systems and methods for generating data associated with at least one portion of a sample can be provided. For example, according to one exemplary embodiment of such systems and methods, it is possible to provide a particular radiation using at least one first arrangement. The particular radiation can include at least one first electro-magnetic radiation directed to at least one sample and at least one second electro-magnetic radiation directed to a reference arrangement. The first radiation and/or the second radiation can comprise a plurality of wavelengths. The first electro-magnetic radiation can be spectrally dispersed along at least one portion of the sample. The second electro-magnetic radiation measured at two or more different lengths of the reference arrangement with respect to the first arrangement. Data can be generated which is associated with the first and second electro-magnetic radiations obtained at the two different lengths using at least one second arrangement which comprises a spectrometer arrangement.
Abstract:
The invention relates to a method and a device for obtaining a low-noise optical signal.According to the method, a luminous beam is injected through two apertures and after detection respectively a basic optical signal (21) and a corrective optical signal (22) are generated. Both optical signals obtained (21, 22) are subtracted, so that a resulting optical signal is generated, forming the low-noise optical signal. The apertures are preferably two slits of a spectroscope, the optical signals being expressible relative to the wavelength.
Abstract:
The present invention relates to an apparatus and a method for optical spectroscopy and for optical sensory technology and to the use of the apparatus. An apparatus having high spectral resolution with simultaneously comparatively low demands on the quality of the optical components is provided in that the apparatus for optical spectroscopy comprises means for the generation of an interference pattern, means for the coupling of the incoming light field to be examined such that only one or several individual spatial modes of the field are permitted, and a detector which can record the intensity of the generated interference pattern at a plurality of spatially different positions, with the wavefronts and/or the propagation direction of at least one of the light fields involved in the interference pattern being changed by spectrally dispersive or diffractive optical elements in dependence on the wavelength. The present invention furthermore relates to a method of determining the optical spectrum and/or of other measurands encoded or transmitted by an optical spectrum by analysis of the interference pattern measured using an apparatus in accordance with the invention or using an apparatus in accordance with the invention.
Abstract:
A method for examining a specimen (27) that exhibits at least two optical transition lines and is optically excitable at least with light of a first and light of a second wavelength is characterized by the step of illuminating the specimen (27) with illuminating light (15) that generates at least a multiple of the first wavelength and a multiple of the second wavelength; and by the step of detecting the detected light (29) proceeding from the specimen (27).Also disclosed is a scanning microscope system (1) having at least one light source (3) that emits illuminating light (15) for illumination of a specimen (27), the specimen (27) exhibiting at least two optical transition lines and being optically excitable at least with light of a first and light of a second wavelength, having at least one detector (41, 43, 65, 77, 79) for detection of the detected light (29) proceeding from the specimen (27) and an objective (25) for focusing the illuminating light (15) onto a subregion of the specimen (27). The scanning microscope system is characterized in that the illuminating light (15) generates at least a multiple of the first wavelength and a multiple of the second wavelength.
Abstract:
Optical systems that provide for simultaneous images and spectra from an object, such as a tissue sample, an industrial object such as a computer chip, or any other object that can be viewed with an optical system such as a microscope, endoscope, telescope or camera. In some embodiments, the systems provide multiple images corresponding to various desired wavelength ranges within an original image of the object, as well as, if desired, directional pointer(s) that can provide both an identification of the precise location from which a spectrum is being obtained, as well as enhancing the ability to point the device.
Abstract:
Method and system for wavelength-based processing of a light beam. A light beam, produced at a chemical or physical reaction site and having at least first and second wavelengths, λ1 and λ2, is received and diffracted at a first diffraction grating to provide first and second diffracted beams, which are received and analyzed in terms of wavelength and/or time at two spaced apart light detectors. In a second embodiment, light from first and second sources is diffracted and compared in terms of wavelength and/or time to determine if the two beams arise from the same source. In a third embodiment, a light beam is split and diffracted and passed through first and second environments to study differential effects. In a fourth embodiment, diffracted light beam components, having first and second wavelengths, are received sequentially at a reaction site to determine whether a specified reaction is promoted, based on order of receipt of the beams. In a fifth embodiment, a cylindrically shaped diffraction grating (uniform or chirped) is rotated and translated to provide a sequence of diffracted beams with different wavelengths. In a sixth embodiment, incident light, representing one or more symbols, is successively diffracted from first and second diffraction gratings and is received at different light detectors, depending upon the wavelengths present in the incident light.
Abstract:
An apparatus or method captures reflectance spectrum for each of a plurality of spatial locations on the surface of a patterned wafer. A spectrometer system having a wavelength-dispersive element receives light reflected from the locations and separates the light into its constituent wavelength components. A one-dimensional imager scans the reflected light during translation of the wafer with respect to the spectrometer to obtain a set of successive, spatially contiguous, one-spatial dimension spectral images. A processor aggregates the images to form a two-spatial dimension spectral image. One or more properties of the wafer, such as film thickness, are determined from the spectral image. The apparatus or method may generate a wavelength-dependent correction factor to correct for diffraction errors introduced in reflectance spectra by the wavelength-dispersive element. The invention provides for automatic rotation of a patterned wafer to determine Goodness of Alignment during a measurement process. The invention may include a dual Offner optical system disposed between the wafer and imager.