Abstract:
Optical cross-connect systems involve the general concept of a two dimensional array of MEMS tilt mirrors being used to direct light coming from a first optical fiber to a second optical fiber. Each MEMS tilt mirror in the two dimensional array can tilt about two non-colinear axes and is suspended by a plurality of suspension arms attached to a silicon on insulator substrate.
Abstract:
The present invention generally relates to a die perimeter region of a die having a microelectromechanical assembly fabricated thereon. This die perimeter region may be configured to facilitate electrically interconnecting adjacent die on a wafer. Moreover, this die perimeter region may be configured to facilitate separating the die from a wafer.
Abstract:
A micrometer sized, single-stage, vertical thermal actuator with controlled bending capable of repeatable and rapid movement of a micrometer-sized optical device off the surface of a substrate. The vertical thermal actuator is constructed on a surface of a substrate. At least one hot arm has a first end anchored to the surface and a free end located above the surface. A cold arm has a first end anchored to the surface and a free end. The cold arm is located above the hot arm relative to the surface. The cold arm is adapted to provide controlled bending near the first end thereof. A member mechanically and electrically couples the free ends of the hot and cold arms such that the actuator bends generally at the flexure so that the member moves away from the substrate when current is applied to at least the hot arm.
Abstract:
A microelectromechanical systems (MEMS) element, MEMS optical switch and MEMS fabrication method are described. The MEMS element comprises a crystalline and moveable element is moveably attached to the substrate. The moveable element includes a perpendicular portion oriented substantially perpendicular to a plane of the substrate. The crystal structure of the perpendicular portion and substrate are substantially similar. The moveable element moveable is moveably attached to the substrate for motion substantially constrained to a plane oriented substantially perpendicular to a plane of the substrate. In at least one position, a part of a perpendicular portion of the moveable element projects beyond a surface of the substrate. The moveable element may be retained in place by a latch. The perpendicular portion may be formed substantially perpendicular portion to the substrate. An array of such structures can be implemented to work as an optical switch. The optical switch may comprise a crystalline substrate and one or more moveable elements moveably attached to the substrate. The MEMS elements may be fabricated by providing a substrate; forming one or more trenches in the substrate to define a perpendicular portion of a element; and moveably attaching the moveable element to a first surface of the substrate; removing a portion of the substrate such that at least a part of the perpendicular portion projects beyond a second surface of the substrate. The various embodiments provide for a robust and reliable MEMS elements that may be simply fabricated and densely packed.
Abstract:
Disclosed herein is an optical switch. The optical switch includes an electrostatic actuator and a substrate. The electrostatic actuator includes an electrostatic actuator, the electrostatic actuator comprising, a reciprocating mass located in the center of the electrostatic actuator, first rotating axes located symmetrically at the left and right sides of the reciprocating mass, first rotating masses rotatably connected to the first rotating axes, first rotating springs for supporting the first rotating masses, linear springs connected to the first rotating masses, second rotating masses connected to the linear springs, second rotating springs for supporting the second rotating masses, second rotating axes connected to the second rotating masses, structural anchors at the side ends of the actuator, drive electrodes, and a micro mirror movable by the same displacement as the reciprocating mass.
Abstract:
A method comprises depositing an organic material on a substrate; depositing additional material different from the organic material after depositing the organic material; and removing the organic material with a compressed fluid. Also disclosed is a method comprising: providing an organic layer on a substrate; after providing the organic layer, providing one or more layers of a material different than the organic material of the organic layer; removing the organic layer with a compressed fluid; and providing an anti-stiction agent with a compressed fluid to material remaining after removal of the organic layer.
Abstract:
Micromechanical devices are provided that are capable of movement due to a flexible portion. The micromechanical device can have a flexible portion formed of an oxide of preferably an element from groups 3A to 6A of the periodic table (preferably from the first two rows of these groups) and a late transition metal (preferably from groups 8B or 1B of the periodic table). The micromechanical devices can be any device, particularly MEMS sensors or actuators preferably having a flexible portion such as an accelerometer, DC relay or RF switch, optical cross connect or optical switch, or a micromirror part of an array for direct view and projection displays. The flexible portion is preferably formed by sputtering a target having a group 8B or 1B element and a selected group 3A to 6A element, namely B, Al, In, Si, Ge, Sn, or Pb. The target can have other major constituents or impurities (e.g. additional group 3A to 6A element(s)). The target is reactively sputtered in a oxygen ambient so as to result in a sputtered hinge. It is possible to form both stiff and/or flexible portions of the micromechanical device in this way.
Abstract:
An optical MEMS device is fabricated in either a surface or bulk micromachining process wherein an integral process step entails providing an antireflective coating on one or more surfaces of a substrate through which optical information is to be transmitted. In one method, a surface micromachining process is carried out in which a sacrificial layer is formed and patterned on an optically transmissive substrate. A structural layer is formed on the sacrificial layer and fills in regions of the sacrificial layer that have been removed. An amount of the sacrificial layer is removed sufficient to define and release a microstructure and thereby render the microstructure movable for interaction with an optical signal directed toward the optically transmissive substrate. In another method, a bulk micromachining process is carried out in which a first substrate is provided that is composed of an optically transmissive material. An antireflective coating is deposited on a major surface of the first substrate to enable an optical signal to be transmitted along a path directed through the antireflective coating and the first substrate. A movable, actuatable microstructure is formed a second substrate. The first and second substrates are aligned and bonded together in a manner enabling the microstructure to interact with the optical signal upon actuation of the microstructure.
Abstract:
A method and apparatus are described for reducing stiction in a MEMS device having a movable element and a substrate. The method generally comprises providing the substrate with an anti-stiction member and interposing the anti-stiction member between the moveable element and the substrate. The apparatus generally comprises an anti-stiction member that is interposable between the moveable element and the substrate. Another embodiment of the invention of the invention is directed to a MEMS device, comprising: a substrate, a moveable element moveably coupled to the substrate, and an anti-stiction member that is interposable between the moveable element and the substrate. A further embodiment of the invention is directed to an optical switch having one or more moveable elements moveably coupled to a substrate, and an anti-stiction member that is interposable between at least one of the moveable elements and the substrate. The anti-stiction member may be in the form of a flexible cantilevered structure that overhangs the moveable element. Actuating the moveable element causes the anti-stiction member to flex and snap into place between the moveable element and the substrate. An additional embodiment of the invention is directed to a method of fabricating a MEMS device. The method proceeds by providing a silicon-on-insulator (SOI) substrate; defining a moveable element from a device layer of the SOI substrate; and depositing a flexible material over the device layer and the moveable element. One or more portions of the flexible material overhang the moveable element, whereby the flexible material forms one or more anti-stiction members.
Abstract:
The etching of a material in a vapor phase etchant is disclosed where a vapor phase etchant is provided to an etching chamber at a total gas pressure of 10 Torr or more, preferably 20 Torr or even 200 Torr or more. The vapor phase etchant can be gaseous acid etchant, a noble gas halide or an interhalogen. The sample/workpiece that is etched can be, for example, a semiconductor device or MEMS device, etc. The material that is etched/removed by the vapor phase etchant is preferably silicon and the vapor phase etchant is preferably provided along with one or more diluents. Another feature of the etching system includes the ability to accurately determine the end point of the etch step, such as by creating an impedance at the exit of the etching chamber (or downstream thereof) so that when the vapor phase etchant passes from the etching chamber, a gaseous product of the etching reaction is monitored, and the end point of the removal process can be determined. The vapor phase etching process can be flow through, a combination of flow through and pulse, or recirculated back to the etching chamber. A first plasma or wet chemical etch (or both) can be performed prior to the vapor phase etch.