Abstract:
The invention relates to a novel process for the preparation of precipitated silica which can be used as a reinforcing filler for elastomers. The invention also relates to novel precipitated silicas in the form of powder, granules or, preferably, substantially spherical beads, these silicas being characterized in that they have a BET specific surface of between 185 and 250 m2/g, a CTAB specific surface of between 180 and 240 m2/g, and a pore distribution such that the pore volume V2 made up of the pores with a diameter of between 175 and 275 Å represents less than 50% of the pore volume V1 made up of the pores with diameters of less than or equal to 400 Å, a pore volume (Vd1), made up of the pores with a diameter of less than 1 μm, of greater than 1.65 cm3/g, a fineness value (F.V.) of between 70 and 100 Å, and a content of fines (τf), after deagglomerability with ultrasound, of at least 50%.
Abstract translation:本发明涉及可用作弹性体增强填料的沉淀二氧化硅的制备方法。 本发明还涉及粉末,颗粒或优选基本上为球形的珠粒形式的新型沉淀二氧化硅,其特征在于它们的BET比表面积为185-250μm2 / g,CTAB比表面积为180-240m 2 / g,孔分布使得由直径在175和275之间的孔构成的孔体积V2表示小于 由直径小于或等于400的孔构成的孔体积V0的50%,孔直径小于1的孔体积(V SUB d1) 大于1.65厘米3 /克,细度值(FV)在70和100埃之间,细粉含量(tau> f f f)),,,,,,,,,) 超声波,至少50%。
Abstract:
Precipitated silicas, characterized in that they have a CTAB surface area (in accordance with ASTM D 3765-92) of 200 to 400 m.sup.2 /g, a DBP index (in accordance with ASTM D 2414) between 230 and 380 ml/100 g as powder and 180-250 g/100 g as granulate, a silanol group density (V.sub.2 -NaOH consumption) of 20 to 30 ml and the following macropore size distribution which is typical of the surface area range involved, determined by means of Hg porosimetry (DIN 66 133) for specific pore size intervals (incremental mode of application):______________________________________ CTAB surface CTAB surface CTAB surface area range: area range: area range: 200-250 m.sup.2 /g 250-300 m.sup.2 /g 300-400 m.sup.2 /gPore size interval �nm! Hg consumption in ml/g of silica______________________________________10-20 0.27-0.49 0.35-0.50 0.32-0.4220-30 0.22-0.32 0.15-0.30 0.17-0.2230-40 0.15-0.21 0.12-0.17 0.12-0.1540-50 0.11-0.16 0.09-0.12 0.08-0.1150-60 0.08-0.12 0.06-0.10 0.06-0.09______________________________________
Abstract:
The present invention relates to an electrodepositable conductive coating composition which contains at least one cationic acrylic polymer, a crosslinking agent and conductive carbon black having an average particle size of about 20 nm or less, a surface area (BET) of about 240-300 m.sup.2 /g and an oil absorption (DBP) of about 100 to 150 ml/100 g. After curing, the conductive coating can be electrocoated with an electrodepositable topcoat having a defect-free appearance and a high degree of gloss.
Abstract:
The present disclosure provides polymeric compositions with balanced electrical and mechanical properties exhibiting reduced hysteresis comprising an electrically insulating polymeric material, a first carbon black material having a statistical thickness surface area (STSA) of below 70 m2/g and an oil absorption number (OAN) in the range from 70 to 150 mL/100 g, and a second carbon black material having a statistical thickness surface area (STSA) of at least 100 m2/g and an oil absorption number (OAN) of at least 150 mL/100 g, wherein both carbon black materials are included in an amount below its respective percolation threshold concentration, with the total amount of the first carbon black material and the second carbon black material being sufficient to render the polymeric composition antistatic or electrically conductive. The polymeric compositions exhibit balanced electrical and mechanical properties and a reduced hysteresis. The disclosure also relates to a process for preparing such antistatic or electrically conductive polymeric compositions and articles produced from such compositions.
Abstract:
A graphene reinforced polyethylene terephthalate composition is provided for forming graphene-PET containers. The graphene reinforced polyethylene terephthalate composition includes a continuous matrix comprising polyethylene terephthalate and a dispersed reinforcement phase comprising graphene nanoplatelets. The graphene nanoplatelets range in diameter between 5 μm and 10 μm with surface areas ranging from about 15 m2/g to about 150 m2/g. In some embodiments, the graphene reinforced polyethylene terephthalate comprises a concentration of graphene nanoplatelets being substantially 3% weight fraction of the graphene reinforced polyethylene terephthalate. The graphene reinforced polyethylene terephthalate is configured to be injection molded into a graphene-PET preform suitable for forming a container. The graphene-PET preform is configured to be reheated above its glass transition temperature and blown into a mold so as to shape the graphene-PET preform into the container.
Abstract:
A product of additive manufacturing with a silicone-based ink includes a plurality of continuous filaments comprised of a siloxane matrix, wherein the continuous filaments are arranged in a geometric pattern, a plurality of inter-filament pores defined by the geometric pattern of the continuous filaments, and a plurality of intra-filament pores having an average diameter in a range of greater than 1 micron to less than 50 microns.
Abstract:
A rubber composition suited for forming a truck tire tread includes 100 phr of elastomers, including a natural rubber and a styrene-butadiene rubber. A ratio by weight of natural rubber to styrene-butadiene rubber is at least 50:50. The composition further includes at least 45 phr of reinforcing fillers, including carbon black and a high surface area silica. The high surface area silica has a CTAB surface area of at least 220 m2/g. A ratio of the carbon black to the high surface area silica is at least 4:1. The composition further includes one or more processing aids and a sulfur-containing cure package.
Abstract:
An addition-curable silicone rubber composition includes: (A) 100 parts by mass of alkenyl-group-containing organopolysiloxane having two or more alkenyl groups bonded to a silicon atom within one molecule; (B) 0.2 to 20 parts by mass of organohydrogenpolysiloxane containing two or more hydrogen atoms bonded to a silicon atom within one molecule; (C) catalytic amount of a platinum-based catalyst; (D) 0.01 to 5.0 parts by mass of thermally-dissociative blocked (poly)isocyanate; and (E) 0.01 to 10.0 parts by mass of a heat resistance-imparting agent. The addition-curable silicone rubber composition and silicone rubber cured material can produce a cured material having a low compressive set even under high temperature conditions of 200° C. or more.
Abstract:
A method for recycling a vulcanized rubber compound. The method includes the steps of grinding recycled rubber compound into a plurality of ground rubber particles, adding a suitable amount of labyrinthine or barrier forming material to a fresh rubber compound, mixing the plurality of ground rubber particles with the fresh rubber compound containing the labyrinthine material, and co-vulcanizing the mixture of the plurality of ground rubber particles with the fresh rubber compound containing the labyrinthine material.