Abstract:
A plasma assisted semiconductor substrate processing chamber having a plurality of electrically conductive bridges for preventing electrical arcing in the chamber. More particularly, the chamber has a plurality of electrically conductive bridges that connect a portion of a substrate support member with a portion of the chamber walls.
Abstract:
Methods and apparatus for controlling power distribution in a substrate processing system are provided. In some embodiments, a substrate processing system including a process chamber having a substrate support and a processing region disposed above the substrate support; a first conduit disposed above the processing region to provide a portion of a first toroidal path that extends through the first conduit and across the processing region; a second conduit disposed above the processing region to provide a portion of a second toroidal path that extends through the second conduit and across the processing region; an RF generator coupled to the first and second conduits to provide RF energy having a first frequency to each of the first and second conduits; an impedance matching network disposed between the RF generator and the first and second conduits; and a power divider to control the amount of RF energy provided to the first and second conduits from the RF generator.
Abstract:
Methods and apparatus for controlling power distribution in a substrate processing system are provided. In some embodiments, a substrate processing system including a process chamber having a substrate support and a processing region disposed above the substrate support; a first conduit disposed above the processing region to provide a portion of a first toroidal path that extends through the first conduit and across the processing region; a second conduit disposed above the processing region to provide a portion of a second toroidal path that extends through the second conduit and across the processing region; an RF generator coupled to the first and second conduits to provide RF energy having a first frequency to each of the first and second conduits; an impedance matching network disposed between the RF generator and the first and second conduits; and a power divider to control the amount of RF energy provided to the first and second conduits from the RF generator.
Abstract:
A method and apparatus for plasma processing of substrates is provided. A processing chamber has a substrate support and a lid assembly facing the substrate support. The lid assembly has a plasma source that comprises an inductive coil disposed within a conductive plate, which may comprise nested conductive rings. The inductive coil is substantially coplanar with the conductive plate, and insulated therefrom by an insulator that fits within a channel formed in the conductive plate, or nests within the conductive rings. A field concentrator is provided around the inductive coil, and insulated therefrom by isolators. The plasma source is supported from a conductive support plate. A gas distributor supplies gas to the chamber through a central opening of the support plate and plasma source from a conduit disposed through the conductive plate.
Abstract:
In a plasma immersion ion implantation process, the thickness of a pre-implant chamber seasoning layer is increased (to permit implantation of a succession of wafers without replacing the seasoning layer) without loss of wafer clamping electrostatic force due to increased seasoning layer thickness. This is accomplished by first plasma-discharging residual electrostatic charge from the thick seasoning layer. The number of wafers which can be processed using the same seasoning layer is further increased by fractionally supplementing the seasoning layer after each wafer is processed, which may be followed by a brief plasma discharging of the supplemented seasoning before processing the next wafer.
Abstract:
A substrate processing system has a housing that defines a process chamber. A substrate holder disposed within the process chamber supports a substrate during substrate processing. A gas-delivery system introduces a gas into the process chamber. A pressure-control system maintains a selected pressure within the process chamber. A high-density plasma generating system forms a plasma having a density greater than 1011 ions/cm3 within the process chamber. A radio-frequency bias system generates an electrical bias on the substrate at a frequency less than 5 MHz. A controller controls the gas-delivery system, the pressure-control system, the high-density plasma generating system, and the radio-frequency bias system.
Abstract:
A method of cleaning a semiconductor fabrication processing chamber involves recirculation of cleaning gas components. Consequently, input cleaning gas is utilized efficiently, and undesirable emissions are reduced. The method includes flowing a cleaning gas to an inlet of a processing chamber, and exposing surfaces of the processing chamber to the cleaning gas to clean the surfaces, thereby producing a reaction product. The method further includes removing an outlet gas including the reaction product from an outlet of the processing chamber, separating at least a portion of the reaction product from the outlet gas, and recirculating a portion of the outlet gas to the inlet of the processing chamber.
Abstract:
A substrate processing apparatus is disclosed. In one embodiment, the apparatus includes a first atmospheric deposition station and a second atmospheric deposition station. The second atmospheric deposition station comprises an atmospheric pressure vapor deposition chamber. A substrate handling system is adapted to transfer substrates between the first and the second atmospheric deposition stations.
Abstract:
A substrate processing chamber 30 comprising a first gas distributor 65 adapted to provide a process gas into the chamber 30 to process the substrate 25, a second gas distributor 215 adapted to provide a cleaning gas into the chamber 30 to clean the chamber, and an exhaust 90 to exhaust the process gas or cleaning gas from the chamber 30.