Fabrication of a Semiconductor Nanoparticle Embedded Insulating Film Electroluminescence Device
    31.
    发明申请
    Fabrication of a Semiconductor Nanoparticle Embedded Insulating Film Electroluminescence Device 有权
    半导体纳米颗粒嵌入式绝缘膜电致发光器件的制造

    公开(公告)号:US20090115311A1

    公开(公告)日:2009-05-07

    申请号:US12187605

    申请日:2008-08-07

    Abstract: A method is provided for fabricating a semiconductor nanoparticle embedded Si insulating film for electroluminescence (EL) applications. The method provides a bottom electrode, and deposits a semiconductor nanoparticle embedded Si insulating film, including an element selected from a group consisting of N and C, overlying the bottom electrode. After annealing, a semiconductor nanoparticle embedded Si insulating film is formed having an extinction coefficient (k) in a range of 0.01-1.0, as measured at about 632 nanometers (nm), and a current density (J) of greater than 1 Ampere per square centimeter (A/cm2) at an applied electric field lower than 3 MV/cm. In another aspect, the annealed semiconductor nanoparticle embedded Si insulating film has an index of refraction (n) in a range of 1.8-3.0, as measured at 632 nm, with a current density of greater than 1 A/cm2 at an applied electric field lower than 3 MV/cm.

    Abstract translation: 提供了一种用于制造用于电致发光(EL)应用的半导体纳米颗粒嵌入的Si绝缘膜的方法。 该方法提供底部电极,并且沉积半导体纳米颗粒嵌入的Si绝缘膜,其包括选自N和C组成的组的元素,覆盖在底部电极上。 在退火之后,形成半导体纳米颗粒嵌入的Si绝缘膜,其消光系数(k)在0.01〜1.0的范围内,在大约632纳米(nm)测量,电流密度(J)大于1安培 在施加的电场低于3MV / cm下的平方厘米(A / cm 2)。 在另一方面,被退火的半导体纳米颗粒嵌入的Si绝缘膜的折射率(n)在632nm处测量的范围为1.8-3.0,在施加的电场下的电流密度大于1A / cm 2 低于3 MV / cm。

    High-density plasma hydrogenation
    32.
    发明授权
    High-density plasma hydrogenation 失效
    高密度等离子体氢化

    公开(公告)号:US07446023B2

    公开(公告)日:2008-11-04

    申请号:US11013605

    申请日:2004-12-15

    Abstract: A high-density plasma hydrogenation method is provided. Generally, the method comprises: forming a silicon (Si)/oxide stack layer; plasma oxidizing the Si/oxide stack at a temperature of less than 400° C., using a high density plasma source, such as an inductively coupled plasma (ICP) source; introducing an atmosphere including H2 at a system pressure up to 500 milliTorr; hydrogenating the stack at a temperature of less than 400 degrees C., using the high density plasma source; and forming an electrode overlying the oxide. The electrode may be formed either before or after the hydrogenation. The Si/oxide stack may be formed in a number of ways. In one aspect, a Si layer is formed, and the silicon layer is plasma oxidized at a temperature of less than 400 degrees C., using an ICP source. The oxide formation, additional oxidation, and hydrogenation steps can be conducted in-situ in a common chamber.

    Abstract translation: 提供了高密度等离子体加氢方法。 通常,该方法包括:形成硅(Si)/氧化物堆叠层; 使用诸如电感耦合等离子体(ICP)源的高密度等离子体源,在小于400℃的温度下等离子体氧化Si /氧化物堆叠; 在系统压力高达500毫托的地方引入包括H2的气氛; 使用高密度等离子体源在小于400摄氏度的温度下对叠层进行氢化; 并形成覆盖氧化物的电极。 电极可以在氢化之前或之后形成。 Si /氧化物堆叠可以以多种方式形成。 在一个方面,使用ICP源形成Si层,并且在低于400℃的温度下对硅层进行等离子体氧化。 氧化物形成,附加氧化和氢化步骤可以在公共室中原位进行。

    Vertical Thin-Film Transistor with Enhanced Gate Oxide
    33.
    发明申请
    Vertical Thin-Film Transistor with Enhanced Gate Oxide 有权
    具有增强型栅极氧化物的垂直薄膜晶体管

    公开(公告)号:US20080224205A1

    公开(公告)日:2008-09-18

    申请号:US12108333

    申请日:2008-04-23

    Abstract: A method is provided for forming a low-temperature vertical gate insulator in a vertical thin-film transistor (V-TFT) fabrication process. The method comprises: forming a gate, having vertical sidewalls and a top surface, overlying a substrate insulation layer; depositing a silicon oxide thin-film gate insulator overlying the gate; plasma oxidizing the gate insulator at a temperature of less than 400° C., using a high-density plasma source; forming a first source/drain region overlying the gate top surface; forming a second source/drain region overlying the substrate insulation layer, adjacent a first gate sidewall; and, forming a channel region overlying the first gate sidewall, in the gate insulator interposed between the first and second source/drain regions. When the silicon oxide thin-film gate insulator is deposited overlying the gate a Si oxide layer, a low temperature deposition process can be used, so that a step-coverage of greater than 65% can be obtained.

    Abstract translation: 提供一种用于在垂直薄膜晶体管(V-TFT)制造工艺中形成低温垂直栅极绝缘体的方法。 该方法包括:形成具有垂直侧壁和顶表面的栅极,覆盖衬底绝缘层; 沉积覆盖栅极的氧化硅薄膜栅极绝缘体; 使用高密度等离子体源在低于400℃的温度下等离子体氧化栅极绝缘体; 形成覆盖所述栅极顶表面的第一源极/漏极区域; 在第一栅极侧壁附近形成覆盖衬底绝缘层的第二源极/漏极区域; 以及在位于第一和第二源极/漏极区之间的栅极绝缘体中形成覆盖第一栅极侧壁的沟道区。 当氧化硅薄膜栅极绝缘体沉积在栅极上覆盖Si氧化物层时,可以使用低温沉积工艺,从而可以获得大于65%的阶梯覆盖率。

    Grayscale reticle for precise control of photoresist exposure
    34.
    发明申请
    Grayscale reticle for precise control of photoresist exposure 失效
    用于精确控制光刻胶曝光的灰度光罩

    公开(公告)号:US20080102641A1

    公开(公告)日:2008-05-01

    申请号:US11588891

    申请日:2006-10-27

    CPC classification number: G03F1/54 G03F1/50 Y10S438/942

    Abstract: A method of fabricating a grayscale reticle includes preparing a quartz substrate; depositing a layer of silicon-rich oxide on the quartz substrate; depositing a layer of silicon nitride as an oxidation barrier layer on the silicon-rich oxide layer; depositing and patterning a layer of photoresist; etching the silicon nitride layer with a pattern for the silicon nitride layer; removing the photoresist; cleaning the quartz substrate and the remaining layers; oxidizing the quartz substrate and the layers thereon, thereby converting the silicon-rich oxide layer to a transparent silicon dioxide layer; removing the remaining silicon nitride layer; forming the quartz substrate and the silicon dioxide thereon into a reticle; and using the reticle to pattern a microlens array.

    Abstract translation: 制造灰度标线的方法包括制备石英基片; 在石英衬底上沉积一层富硅氧化物; 在富硅氧化物层上沉积氮化硅层作为氧化阻挡层; 沉积和图案化一层光致抗蚀剂; 用氮化硅层的图案蚀刻氮化硅层; 去除光致抗蚀剂; 清洗石英衬底和其余层; 氧化石英衬底及其上的层,从而将富硅氧化物层转化为透明二氧化硅层; 去除剩余的氮化硅层; 在其上形成石英衬底和二氧化硅到掩模版中; 并使用掩模版对微透镜阵列进行图案化。

    Thin film oxide interface
    35.
    发明授权
    Thin film oxide interface 失效
    薄膜氧化物界面

    公开(公告)号:US07196383B2

    公开(公告)日:2007-03-27

    申请号:US11046571

    申请日:2005-01-28

    CPC classification number: H01L29/66757 H01L29/4908 H01L29/66772

    Abstract: An oxide interface and a method for fabricating an oxide interface are provided. The method comprises forming a silicon layer and an oxide layer overlying the silicon layer. The oxide layer is formed at a temperature of less than 400° C. using an inductively coupled plasma source. In some aspects of the method, the oxide layer is more than 20 nanometers (nm) thick and has a refractive index between 1.45 and 1.47. In some aspects of the method, the oxide layer is formed by plasma oxidizing the silicon layer, producing plasma oxide at a rate of up to approximately 4.4 nm per minute (after one minute). In some aspects of the method, a high-density plasma enhanced chemical vapor deposition (HD-PECVD) process is used to form the oxide layer. In some aspects of the method, the silicon and oxide layers are incorporated into a thin film transistor.

    Abstract translation: 提供氧化物界面和制造氧化物界面的方法。 该方法包括形成硅层和覆盖硅层的氧化物层。 使用电感耦合等离子体源在低于400℃的温度下形成氧化物层。 在该方法的一些方面,氧化物层的厚度大于20纳米(nm),折射率在1.45和1.47之间。 在该方法的一些方面,通过等离子体氧化硅层形成氧化物层,以每分钟高达约4.4nm的速率产生等离子体氧化物(1分钟后)。 在该方法的某些方面,使用高密度等离子体增强化学气相沉积(HD-PECVD)工艺来形成氧化物层。 在该方法的一些方面,将硅和氧化物层结合到薄膜晶体管中。

    Method for forming an oxide with improved oxygen bonding
    36.
    发明授权
    Method for forming an oxide with improved oxygen bonding 失效
    用于形成具有改善的氧键的氧化物的方法

    公开(公告)号:US07122487B2

    公开(公告)日:2006-10-17

    申请号:US10801377

    申请日:2004-03-15

    CPC classification number: H01L29/66757 H01L29/4908 H01L29/66772

    Abstract: A deposition oxide interface with improved oxygen bonding and a method for bonding oxygen in an oxide layer are provided. The method includes depositing an M oxide layer where M is a first element selected from a group including elements chemically defined as a solid and having an oxidation state in a range of +2 to +5, plasma oxidizing the M oxide layer at a temperature of less than 400° C. using a high density plasma source, and in response to plasma oxidizing the M oxide layer, improving M-oxygen bonding in the M oxide layer. The plasma oxidation process diffuses excited oxygen radicals into the oxide layer. The plasma oxidation is performed at specified parameters including temperature, power density, pressure, process gas composition, and process gas flow. In some aspects of the method, M is silicon, and the oxide interface is incorporated into a thin film transistor.

    Abstract translation: 提供了具有改善的氧键的沉积氧化物界面和氧化层中的氧键合方法。 该方法包括沉积M氧化物层,其中M是选自化学上定义为固体且具有+2至+5范围内的氧化态的元素的第一元素,在氧化层中氧化氧化层的温度为 小于400℃,使用高密度等离子体源,并且响应于等离子体氧化M氧化物层,改善M氧化物层中的M-氧键。 等离子体氧化过程将激发的氧自由基扩散到氧化物层中。 等离子体氧化在包括温度,功率密度,压力,工艺气体成分和工艺气体流量在内的特定参数下进行。 在该方法的一些方面,M是硅,并且氧化物界面被结合到薄膜晶体管中。

    Method and system for multi-PHY addressing
    37.
    发明申请
    Method and system for multi-PHY addressing 有权
    多PHY寻址方法和系统

    公开(公告)号:US20050226160A1

    公开(公告)日:2005-10-13

    申请号:US11144257

    申请日:2005-06-03

    CPC classification number: H04L12/5601 H04L49/405

    Abstract: Multi-PHY addressing from source to destination in which n-number of channels or ports are used in a PHY layer device for communication with a link layer device. A single link layer to a single-PHY layer topology and a single link layer to a multi-PHY layer topology comprising multiple ports or channels receives a plurality of channels groups. Status indication signal is provided on continuous basis for the direct status for up to a predetermined number of channels.

    Abstract translation: 从源到目的地的多PHY寻址,其中在PHY层设备中使用n个信道或端口用于与链路层设备通信。 包括多个端口或信道的单个PHY层拓扑和单个链路层到包含多个端口或信道的多PHY层拓扑的单个链路层接收多个信道组。 连续地提供状态指示信号,用于直到预定数量的通道的直接状态。

    Loading previously dispatched slots in multiple instruction dispatch buffer before dispatching remaining slots for parallel execution
    38.
    发明授权
    Loading previously dispatched slots in multiple instruction dispatch buffer before dispatching remaining slots for parallel execution 失效
    在调度剩余插槽并行执行之前先加载先前在多个指令调度缓冲区中调度的插槽

    公开(公告)号:US06691221B2

    公开(公告)日:2004-02-10

    申请号:US09863898

    申请日:2001-05-24

    Abstract: A computing system has first and second instruction storing circuits, each instruction storing circuit storing N instructions for parallel output. An instruction dispatch circuit, coupled to the first instruction storing circuit dispatches L instructions stored in the first instruction storing circuit, wherein L is less than or equal to N. An instruction loading circuit, coupled to the instruction dispatch circuit and to the first and second instruction storing circuits, loads L instructions from the second instruction storing circuit into the first instruction storing circuit after the L instructions are dispatched from the first instruction storing circuit and before further instructions are dispatched from the first instruction storing circuit. The instruction loading circuit loads the L instructions from the second instruction storing circuit into the positions previously occupied by the L instructions dispatched from the first instruction storing circuit. A feedback path is also provided to reload an instruction not previously dispatched.

    Abstract translation: 计算系统具有第一和第二指令存储电路,每个指令存储电路存储用于并行输出的N个指令。 耦合到第一指令存储电路的指令调度电路调度存储在第一指令存储电路中的L指令,其中L小于或等于N.一个指令加载电路,耦合到指令调度电路和第一和第二指令 指令存储电路,在从第一指令存储电路发出L指令之后并且从第一指令存储电路调度进一步的指令之前,将来自第二指令存储电路的L指令加载到第一指令存储电路中。 指令加载电路将来自第二指令存储电路的L指令加载到先前由从第一指令存储电路分派的L指令占据的位置。 还提供反馈路径来重新加载先前未发送的指令。

    Plasma method for fabricating oxide thin films
    39.
    发明授权
    Plasma method for fabricating oxide thin films 有权
    用于制造氧化物薄膜的等离子体方法

    公开(公告)号:US06689646B1

    公开(公告)日:2004-02-10

    申请号:US10295579

    申请日:2002-11-14

    CPC classification number: H01L29/66757 H01L29/78603 H01L29/78609

    Abstract: A method is provided for fabricating a thin film oxide. The method include forming a first silicon layer, applying a second silicon layer overlying the first silicon layer, oxidizing the second silicon layer at a temperature of less than 400° C. using an inductively coupled plasma source, and forming a thin film oxide layer overlying the first silicon layer. In some cases, the thin film oxide layer overlies the oxidized second silicon layer and is formed by a high-density plasma enhanced chemical vapor deposition process and an inductively coupled plasma source at a temperature of less than 400° C. In some cases, the thin film oxide layer and the first silicon layer are incorporated into a thin film transistor and the thin film oxide layer has a fixed oxide charge density of 3×1011 per square centimeter.

    Abstract translation: 提供了制造薄膜氧化物的方法。 该方法包括形成第一硅层,施加覆盖第一硅层的第二硅层,使用电感耦合等离子体源在小于400℃的温度下氧化第二硅层,以及形成覆盖层的薄膜氧化物层 第一硅层。 在一些情况下,薄膜氧化物层覆盖氧化的第二硅层,并且通过高密度等离子体增强化学气相沉积工艺和电感耦合等离子体源在低于400℃的温度下形成。在一些情况下, 薄膜氧化物层和第一硅层结合到薄膜晶体管中,并且薄膜氧化物层具有固定的氧化物电荷密度为3×10 11每平方厘米。

Patent Agency Ranking