Abstract:
A video, audio and graphics system uses multiple transport processors to receive in-band and out-of-band MPEG Transport streams, to perform PID and section filtering as well as DVB and DES decryption and to de-multiplex them. The system processes the PES into digital audio, MPEG video and message data. The system is capable of decoding multiple MPEG SLICEs concurrently. Graphics windows are blended in parallel, and blended with video using alpha blending. During graphics processing, a single-port SRAM is used equivalently as a dual-port SRAM. The video may include both analog video, e.g., NTSC/PAL/SECAM/S-video, and digital video, e.g., MPEG-2 video in SDTV or HDTV format. The system has a reduced memory mode in which video images are reduced in half in horizontal direction only during decoding. The system is capable of receiving and processing digital audio signals such as MPEG Layer 1 and Layer 2 audio and Dolby AC-3 audio, as well as PCM audio signals. The system includes a memory controller. The system includes a system bridge controller to interface a CPU with devices internal to the system as well as peripheral devices including PCI devices and I/O devices such as RAM, ROM and flash memory devices. The system is capable of displaying video and graphics in both the high definition (HD) mode and the standard definition (SD) mode. The system may output an HDTV video while converting the HDTV video and providing as another output having an SDTV format or another HDTV format.
Abstract:
Presented herein are systems, methods, and apparatus for simultaneously providing full size video and massively scaled down video using inconification. In one embodiment, there is presented a method for providing a video output. The method comprises decoding an encoded picture, thereby resulting in a decoded picture; reducing the decoded picture, thereby resulting in a reduced picture; storing the reduced picture; and encoding the reduced picture, thereby resulting in a synthetic picture.
Abstract:
Presented herein are systems and methods for pause and freeze functions for digital video streams. A particular picture is displayed for a plurality of video display periods. A next picture is displayed at the video display period immediately following the plurality of video display periods, the next picture immediately following the particular picture in a display order. A system clock reference is loaded with a time stamp associated with the next picture when displaying the next picture.
Abstract:
A system and method that support display of video fields using related data encoded in data structures. Each data structure is associated with one video field and contains all the information associated with the display of the video field. The data structure is encoded with the video field that is displayed exactly one field prior to the field associated with the data structure. In an embodiment of the present invention, the data structure contains all the information associated with the display of a video field, regardless of whether certain data changes from one field to the next.
Abstract:
A television on a chip (TVOC) system that provides a cost effective approach for providing television functionality on a single integrated circuit chip is disclosed. A TVOC includes the functionality necessary to receive and display television signals in a variety of input and output formats. A TVOC can be used in set-top boxes for cable and satellite television, or directly within a television. All functionality provided can be provided on a single integrated circuit. TVOC includes a data transport module, an IF demodulator, a digital audio engine, an analog audio engine, a digital video engine, and an analog video engine. The TVOC also includes three sets of interfaces including output interfaces, control interfaces and ancillary interfaces. Further features and embodiments provide enhanced functionality and increased efficiencies.
Abstract:
Described herein is a system and method for audio visual synchronization. The picture are displayed by receiving an identifier, said identifier associated with a frame buffer storing a picture; extracting a presentation time stamp associated with the picture, wherein the picture is associated with a time stamp; comparing a local time clock value to the presentation time stamp; determining that the picture is mature for presentation if the presentation time stamp exceeds the local time clock value by less than a first predetermined threshold; and determining that the picture is mature for presentation if the local time clock value exceeds the presentation time stamp by less than a second predetermined threshold.
Abstract:
A video and graphics system processes video data including both analog video, e.g., NTSC/PAL/SECAM/S-video, and digital video, e.g., MPEG-2 video in SDTV or HDTV format. The video and graphics system includes a video decoder, which is capable of concurrently decoding multiple SLICEs of MPEG-2 video data. The video decoder includes multiple row decoding engines for decoding the MPEG-2 video data. Each row decoding engine concurrently decodes two or more rows of the MPEG-2 video data. The row decoding engines have a pipelined architecture for concurrently decoding multiple rows of MPEG-2 video data. The video decoder may be integrated on an integrated circuit chip with other video and graphics system components such as transport processors for receiving one or more compressed data streams and for extracting video data, and a video compositor for blending processed video data with graphics.
Abstract:
Provided is a process for the production of hydrogen cyanide by reacting methane, ammonia and oxygen in the presence of a catalyst. The process, more specifically, comprises first establishing a temperature for the catalyst in the reaction using air as a source for oxygen. This essentially establishes the gauze temperature of the plant. Additional oxygen is then provided to the reaction to provide oxygen enrichment of the reaction feed, while also adjusting the amount of ammonia and methane reactants in the reaction feed such that the volume percent of the ammonia and methane is above the upper flammability limit and the temperature of catalyst is maintained within 50.degree. C. of the temperature of the catalyst originally established as the fixed gauze temperature of the plant. The process of the present invention allows one to increase production of hydrogen cyanide while maintaining safe operation and not sacrificing catalyst performance in return. In particular, the process of the present invention has applicability to existing plants which need to be improved with regard to hydrogen cyanide production. The process would allow one to take the existing plant, optimize production, capacity and selectivity, while operating safely without adversely affecting catalyst performance.
Abstract:
Systems and methods that provide time-based management for MPEG decoding are provided. In one example, a method for live decoding in a personal video recorder system includes the steps of receiving at least one data packet; determining at least one program clock reference (PCR) using the at least one data packet; and locking a timing mechanism to the at least one determined PCR.
Abstract:
A method of adding power control circuitry to a circuit design at each of an RTL and a netlist level comprising: demarcating multiple power domains within the circuit design; specifying multiple power modes each power mode corresponding to a different combination of on/off states of the multiple demarcated power domains; and defining isolation behavior relative to respective power domains.