Abstract:
A light emitting diode (LED) having a p-type layer having a thickness of 100 nm or less, an n-type layer, and an active layer, positioned between the p-type layer and the n-type layer, for emitting light, wherein the LED does not include a separate electron blocking layer.
Abstract:
A method of fabricating an optoelectronic device, comprising growing an active layer of the device on an oblique surface of a suitable material, wherein the oblique surface comprises a facetted surface. The present invention also discloses a method of fabricating the facetted surfaces. One fabrication process comprises growing an epitaxial layer on a suitable material, etching the epitaxial layer through a mask to form the facets having a specific crystal orientation, and depositing one or more active layers on the facets. Another method comprises growing a layer of material using a lateral overgrowth technique to produce a facetted surface, and depositing one or more active layers on the facetted surfaces. The facetted surfaces are typically semipolar planes.
Abstract:
A high efficiency, and possibly highly directional, light emitting diode (LED) with an optimized photonic crystal extractor. The LED is comprised of a substrate, a buffer layer grown on the substrate (if needed), an active layer including emitting species, one or more optical confinement layers that tailor the structure of the guided modes in the LED, and one or more diffraction gratings, wherein the diffraction gratings are two-dimensional photonic crystal extractors. The substrate may be removed and metal layers may be deposited on the buffer layer, photonic crystal and active layer, wherein the metal layers may function as a mirror, an electrical contact, and/or an efficient diffraction grating.
Abstract:
A device for displaying images positions a luminescent material between a light source and a liquid crystal display (LCD). The light source, which comprises one or more nonpolar or semipolar III-nitride based light emitting diodes (LEDs), emits a primary light having a specified polarization direction and comprising one or more first wavelengths. This primary light emitted by the light source is a linearly polarized light that eliminates any need for a polarizer. The luminescent material, which comprises one or more phosphors, is optically pumped by the primary light and emits a secondary light having the polarization direction of the primary light, wherein the secondary light is comprised one or more second wavelengths that are different from the first wavelength. This secondary light emitted by the luminescent material is a colored light that eliminates any need for a color filter. The LCD receives the secondary light and displays one or more images in response thereto.
Abstract:
A method for improving the growth morphology of (Ga,Al,In,B)N thin films on nonpolar or semipolar (Ga,Al,In,B)N substrates, wherein a (Ga,Al,In,B)N thin film is grown directly on a nonpolar or semipolar (Ga,Al,In,B)N substrate or template and a portion of the carrier gas used during growth is comprised of an inert gas. Nonpolar or semipolar nitride LEDs and diode lasers may be grown on the smooth (Ga,Al,In,B)N thin films grown by the present invention.
Abstract:
A method of fabricating an (Al,Ga,In)N laser diode, comprising depositing one or more III-N layers upon a growth substrate at a first temperature, depositing an indium containing laser core at a second temperature upon layers deposited at a first temperature, and performing all subsequent fabrication steps under conditions that inhibit degradation of the laser core, wherein the conditions are a substantially lower temperature than the second temperature.
Abstract:
The present invention provides a method for growing group III-nitride crystals wherein the group III-nitride crystal growth occurs on an etched seed crystal. The etched seed is fabricated prior to growth using a temperature profile which produces a high solubility of the group III-nitride material in a seed crystals zone as compared to a source materials zone. The measured X-ray diffraction of the obtained crystals have significantly narrower Full Width at Half Maximum values as compared to crystals grown without etch back of the seed crystal surfaces prior to growth.
Abstract:
A high-power and high-efficiency light emitting device with emission wavelength (λpeak) ranging from 280 nm to 360 nm is fabricated. The new device structure uses non-polar or semi-polar AlInN and AlInGaN alloys grown on a non-polar or semi-polar bulk GaN substrate.
Abstract:
A method for enhancing growth of device-quality planar semipolar nitride semiconductor thin films via metalorganic chemical vapor deposition (MOCVD) by using an (Al,In,Ga)N nucleation layer containing at least some indium. Specifically, the method comprises loading a substrate into a reactor, heating the substrate under a flow of nitrogen and/or hydrogen and/or ammonia, depositing an InxGa1-xN nucleation layer on the heated substrate, depositing a semipolar nitride semiconductor thin film on the InxGa1-xN nucleation layer, and cooling the substrate under a nitrogen overpressure.
Abstract translation:通过使用含有至少一些铟的(Al,In,Ga)N成核层,通过金属有机化学气相沉积(MOCVD)增强器件质量的平面半极性半导体薄膜的生长的方法。 具体地,该方法包括将衬底装载到反应器中,在氮气和/或氢气和/或氨气流下加热衬底,在加热衬底上沉积In x Ga 1-x N成核层,在半导体衬底上沉积半极性氮化物半导体薄膜 In x Ga 1-x N成核层,并在氮气过压下冷却该衬底。
Abstract:
A technique for growing high quality bulk hexagonal single crystals using a solvo-thermal method, and a technique for achieving the high quality and high growth rate at the same time. The crystal quality strongly depends on the growth planes, wherein a nonpolar or semipolar seed surface such as {10-10}, {10-11}, {10-1-1}, {10-12}, {10-1-2}, {11-20}, {11-22}, {11-2-2} gives a higher crystal quality as compared to a c-plane seed surface such as (0001) and (000-1). Also, the growth rate strongly depends on the growth planes, wherein a semipolar seed surface such as {10-12}, {10-1-2}, {11-22}, {11-2-2} gives a higher growth rate. High crystal quality and high growth rate are achievable at the same time by choosing the suitable growth plane. The crystal quality also depends on the seed surface roughness, wherein high crystal quality is achievable when the nonpolar or semipolar seed surface RMS roughness is below 100 nm; on the other hand, the crystal grown from the Ga-face or N-face results in poor crystal quality, even though grown from an atomically smooth surface.