Abstract:
A package on package (POP) and method thereof are provided. The example POP may include a first semiconductor package including a first substrate, the first substrate being a flexible substrate having at least one folded portion, a first semiconductor chip mounted on and electrically connected to the first substrate and a second semiconductor package including a second substrate, at least one second semiconductor chip mounted on and electrically connected to the first substrate, the first and second semiconductor packages being electrically connected between the at least one folded portion of the first substrate and a portion of the second substrate.
Abstract:
Disclosed are a cooking apparatus and a method of controlling the same, which are capable of easily recognizing change in temperature of one of an oven and a cooktop through change in color corresponding to the temperature change at a position remote from the cooking apparatus, and which are capable of easily recognizing the temperature of the cooktop through a temperature display unit at a position that is somewhat lower than the cooktop by installing a temperature display unit at a position higher than the cooktop. To this end, the cooking apparatus includes a main body having at least one heating unit, a control panel installed on an upper surface of the main body, and a temperature display unit that is provided on the control panel, which displays a temperature of the heating unit through change in color.
Abstract:
A stacked semiconductor package may include a wiring substrate. A first semiconductor chip may be disposed on the wiring substrate and wire-bonded to the wiring substrate. An interposer chip may be disposed on the wiring substrate and sire bonded to the wiring substrate. The interposer chip may include a circuit element and a bonding pad being electrically connected. A second semiconductor chip may be disposed on the interposer chip and wire-bonded to the interposer chip. The second semiconductor chip may be electrically connected to the wiring substrate through the interposer chip.
Abstract:
Provided is a heating cooker which includes a body constituting an appearance thereof, an upper panel on which a cooking container is laid, a heater positioned under the upper panel to heat the cooking container laid on the upper panel, a fan housing liftably positioned at one side of the body to be raised above the upper panel and having an air intake port and an air discharge port, a blast fan and a fan motor positioned in the fan housing to forcibly blow air toward a surface of the upper panel, a fan housing lifter to raise and lower the fan housing, a temperature sensor to detect the temperature of the upper panel, and a controller to control the heater, the fan motor, and the fan housing lifter. The upper panel heated by the heater can be forcibly cooled by air from the fan housing.
Abstract:
Disclosed is a semiconductor device packaging technique that is capable of resolving a problem of instability of bonding wires when stacking a plurality of semiconductor chips. The technique is also capable of realizing a slim, light and small package. The semiconductor device package includes a substrate having a substrate pad on a surface thereof, one or more memory chips stacked on the substrate with each memory chip having a pad connected to a common pin receiving a common signal applied to all the memory chips, an interposer chip stacked on the substrate and having an interconnection wire connected to the memory chip pad, the common pin of each of the memory chips being electrically connected to the interconnection wire via the memory chip pad, and a logic chip stacked on the substrate and having a bypass circuit which electrically connects or disconnects the interconnection wire to or from the substrate pad.
Abstract:
A divider using neural network configurations comprises a subtractor, a selecting means, a first latch means, a second latch means, a shift register and a control means. The subtractor of the divider comprises plural inverters and plural 3-bit full-adders which are composed of four output lines, an input synapse group, a first bias synapse group, a second bias synapse group, a feedback synapse group, a neuron group and an inverter group.
Abstract:
In one embodiment, the semiconductor device includes a substrate having an impurity region, and the substrate and the impurity region have a different impurity characteristic. The semiconductor device further includes a stack of alternating first interlayer insulating layers and gate electrode layers on the substrate; at least one second interlayer insulating layer formed on the stack; a plurality of bit lines formed on the second interlayer insulating layer; and a first plurality of channel structures formed through the stack on the substrate. The first plurality of channel structures are electrically connected to respective ones of the plurality of bit lines. A second plurality of channel structures are formed through the stack on the impurity region, and the second plurality of channel structures are electrically insulated from the plurality of bit lines.
Abstract:
In one embodiment, the semiconductor device includes a substrate having an impurity region, and the substrate and the impurity region have a different impurity characteristic. The semiconductor device further includes a stack of alternating first interlayer insulating layers and gate electrode layers on the substrate; at least one second interlayer insulating layer formed on the stack; a plurality of bit lines formed on the second interlayer insulating layer; and a first plurality of channel structures formed through the stack on the substrate. The first plurality of channel structures are electrically connected to respective ones of the plurality of bit lines. A second plurality of channel structures are formed through the stack on the impurity region, and the second plurality of channel structures are electrically insulated from the plurality of bit lines.
Abstract:
According to an example embodiment, a method includes forming a nitrogen vacancy surface layer by treating a surface of an n-type nitride semiconductor with inert gas plasma, and forming an oxygen-added nitride film by treating a surface of the nitrogen vacancy surface layer with oxygen-containing gas plasma, and forming an electrode on the oxygen-added nitride film. The nitrogen vacancy surface layer lacks a nitrogen element.
Abstract:
A mobile terminal comprising a display unit; and a controller configured to selectively display one or more menu icons associated with an object displayed on the display unit, in response to the object being selected, wherein the one or more menu icons have a functional or informational association with the selected object, such that further selection of the menu icons provides additional information about the selected object or establishment of a dynamic relationship between the selected object and the one or more menu icons results in performance of an operation related to the selected object.