Abstract:
Various methods and systems are provided for adjusting a flow of exhaust gas in an exhaust gas recirculation system. In one embodiment, a method for an engine comprises controlling a flow of exhaust gas through an exhaust gas recirculation system of an engine system based on a choke level of a turbocharger. For example, the flow of exhaust gas in the exhaust gas recirculation system may be reduced to within a threshold of a choke level of the turbocharger, in response to an ambient condition.
Abstract:
Various methods and systems are provided for adjusting an air-fuel ratio for combustion in an engine. In one embodiment, a method for an engine (e.g., a method for controlling an engine system) comprises responding to a sensed change in a load on the engine, or indications of engine knock or misfire, by one or more of: altering a speed of the engine, adjusting a fueling flow rate into at least one cylinder of the engine, and adjusting a position of a valve in a bypass passage configured to direct compressed intake air away from cylinders of the engine to obtain a determined air-fuel ratio; and thereby maintaining an air-fuel ratio in a determined range.
Abstract:
Various methods and systems are provided for controlling emissions. In one example, a controller is configured to respond to a sensed or estimated intake oxygen fraction by controlling an exhaust gas recirculation (EGR) amount supplied to an engine to maintain a level of particulate matter (PM) in a determined PM range and a level of NOx in a determined NOx range, and adjusting a target intake manifold oxygen fraction or target intake manifold EGR fraction in response to a NOx sensor feedback signal.
Abstract:
A method involves comparing a determined operating parameter of an engine, with a predefined operating parameter. The method further involves controlling a fuel source and an ignition source of the engine so as to operate at least one engine cylinder in a skip fire mode for at least one cycle of a crank shaft when the determined operating parameter is greater than the predefined operating parameter. The controlling involves transitioning the fuel source from a normal mode to the skip fire mode for the at least one cycle of the crank shaft either before transitioning the ignition source from the normal mode to the skip fire mode or when the ignition source is operated in the normal mode.
Abstract:
Various methods and systems are provided for controlling emissions. In one example, a controller is configured to respond to one or more of intake manifold air temperature (MAT), intake air flow rate, or a sensed or estimated intake oxygen fraction by changing an exhaust gas recirculation (EGR) amount to maintain particulate matter (PM) and NOx within a range, and then further adjusting the EGR amount based on NOx sensor feedback.
Abstract:
Various methods and systems for an engine driving an electrical power generation system are provided. In one embodiment, an example method for an engine driving an electrical power generation system includes adjusting an engine speed in response to a relationship between oxygen and fuel while maintaining a power transmitted to the electrical power generation system.
Abstract:
Various methods and systems are provided for determining a surge level of a compressor. In one embodiment, a method for an engine comprises updating a stored estimate of a surge level of a compressor responsive to detection of a surge event.
Abstract:
Various methods and systems are provided for adjusting a flow of exhaust gas in an exhaust gas recirculation system. In one embodiment, a method for an engine comprises controlling a flow of exhaust gas through an exhaust gas recirculation system of an engine system based on a choke level of a turbocharger. For example, the flow of exhaust gas in the exhaust gas recirculation system may be reduced to within a threshold of a choke level of the turbocharger, in response to an ambient condition.
Abstract:
Various methods and systems are provided for generating exhaust energy and converting exhaust energy to electrical energy while an engine is not running. In one example, a system for an engine comprises: a first turbocharger including a first compressor driven by a first turbine, the first turbine disposed in an exhaust of the engine; a fuel burner fluidly coupled to the exhaust upstream of the first turbine; a generator coupled to one of the first turbine or an auxiliary, second turbine fluidly coupled to the exhaust downstream of the fuel burner; and one or more bypass valves configured to adjust a flow of air that bypasses the engine and is delivered to the fuel burner.
Abstract:
Various methods and systems are provided for generating exhaust energy and converting exhaust energy to electrical energy while an engine is not running. In one example, a system for an engine comprises: a first turbocharger including a first compressor driven by a first turbine, the first turbine disposed in an exhaust of the engine; a fuel burner fluidly coupled to the exhaust upstream of the first turbine; a generator coupled to one of the first turbine or an auxiliary, second turbine fluidly coupled to the exhaust downstream of the fuel burner; and one or more bypass valves configured to adjust a flow of air that bypasses the engine and is delivered to the fuel burner.