Abstract:
Disclosed in some examples is a method for providing a HARQ response in an LTE network for a PUCCH format 1b. The method includes receiving one or more downlink assignments of a bundling window over a wireless downlink control channel; setting a reception status for each sub-frame of a downlink data channel in the bundling window based on whether the sub-frame on the downlink data channel was associated with a particular one of the received downlink assignments and based upon whether the sub-frame was successfully received; setting a reception status of sub-frames of the downlink data channel in the bundling window that did not have a corresponding downlink assignment to a predetermined value; and transmitting a response, the response based upon the reception statuses set by the response module.
Abstract:
In embodiments, an evolved Node B (eNB) of a wireless communication network may configure an enhanced physical downlink control channel (EPDCCH) physical resource block (PRB) set for a user equipment (UE). The EPDCCH-PRB set may include a plurality of PRB-pairs. The EPDCCH-PRB set may further include a plurality of enhanced resource element groups (EREGs) organized into localized enhanced control channel elements (ECCEs) having EREGs of the same PRB-pair and distributed ECCEs having EREGs of different PRB-pairs. In some embodiments, the eNB may determine a set of distributed EPDCCH candidates for the UE from the EPDCCH-PRB set, wherein the individual distributed EPDCCH candidates include one or more of the distributed ECCEs, and wherein the set of distributed EPDCCH candidates includes at least one EREG from each of the plurality of localized ECCEs. Other embodiments may be described and claimed.
Abstract:
Technology to support mapping for Hybrid Automatic Retransmission re-Quest (HARQ) for Carrier Aggregation (CA) is disclosed. One method can include a user equipment (UE) identifying, within a radio frame, a type 2 DownLink (DL) sub-frame within a virtual bundling window associated with a Secondary Component Carrier (SCC). The type 2 DL sub-frame can be virtually moved from a Primary Component Carrier (PCC) for HARQ-ACKnowledge (HARQ-ACK) multiplexing of the virtual bundling window. The UE can extract a Component Carrier Element (CCE) number for a first CCE used by a Physical Downlink Control CHannel (PDCCH) transmission corresponding to the type 2 DL sub-frame. The UE can determine a Physical Uplink Control CHannel (PUCCH) resource for carrying a HARQ-ACK multiplexing message based on the CCE number when a PCC window size of the PCC is greater than an SCC window size of the SCC.
Abstract:
In embodiments, an eNodeB (eNB) may include a sequence generator to identify an initialization parameter for a pseudo-random sequence. The initialization parameter may have a periodicity greater than one radio frame of a radio signal. The sequence generator may then generated a pseudo-random sequence based at least in part on the initialization parameter, and then generate a reference signal based on the pseudo-random sequence. The eNB may further include a transmitter that is coupled with the sequence generator and is to transmit the reference signal in a subframe of the radio signal.
Abstract:
Embodiments of the present disclosure include methods, apparatuses, and instructions for receiving at a user equipment (UE) of a third generation partnership project (3GPP) network an offset value selected from a plurality of offset values in downlink control information. The UE also receives one or more enhanced control channel elements (eCCEs) of an enhanced physical downlink control channel (ePDCCH). The UE may then determine an allocation of an uplink resource for a transmission on a physical uplink control channel (PUCCH) based at least in part on the index of a first eCCE and the offset value.
Abstract:
Embodiments disclosed herein are directed to new mechanisms of resource allocation for transmission of positioning or ranging (e.g., sounding) reference signals. The embodiments may provide flexible and/or efficient resource allocation, and may improve accuracy of user positioning. The techniques described herein may be applied for multiple use cases, including UAS, V2X, IIoT, etc.
Abstract:
A user equipment (UE) for operation in a fifth-generation new radio (5G NR) network may be configured with two or more secondary cells (SCells) of a group of SCells. In these embodiments, the UE may monitor a physical downlink control channel (PDCCH) for detection of a downlink control information (DCI) format 1_1. The UE may interpret the DCI format 1_1 as indicating SCell dormancy, rather than scheduling a physical downlink shared channel (PDSCH) reception, if the UE is configured with resourceAllocationType1 and if all bits of a frequency domain resource assignment field in the DCI format 1_1 are equal to 1. For SCell dormancy, the UE may interpret fields of the DCI format 1_1 as a bitmap for SCell dormancy indication and either activate or deactivate a downlink bandwidth part (DL BWP) for an SCell of the group of configured SCells when indicated by the bitmap.
Abstract:
Embodiments of a user equipment (UE) configured for new-radio (NR) operations in a fifth-generation (5G) system (5GS) may be configured to detect a downlink-control information (DCI) format that includes a one-shot hybrid automatic repeat request acknowledgement (HARQ-ACK) request field and a frequency domain resource assignment field (FDRA). The one-shot HARQ-ACK request field may indicate whether one-shot HARQ-ACK feedback is triggered. The UE may decode the FDRA field to determine whether the FDRA field indicates a valid frequency resource or whether the FDRA field indicates a special value and may also be configured to determine whether or not a physical downlink shared channel (PDSCH) is scheduled by the DCI format and whether or not secondary cell (SCell) dormancy switching is triggered based on both the one-shot HARQ-ACK request field and the FDRA field. The UE may also encode a HARQ-ACK transmission on a physical uplink control channel (PUCCH). The HARQ-ACK transmission may be encoded to include HARQ-ACK feedback for PDSCH transmissions for all HARQ processes of a cell when the one-shot HARQ-ACK feedback is triggered.
Abstract:
Various embodiments herein provide physical uplink control channel (PUCCH) designs for discrete Fourier transform-spread-orthogonal frequency-division multiplexing (DFT-s-OFDM) waveforms for systems operating above the 52.6 GHz carrier frequency. Some embodiments of the present disclosure may be directed to phase tracking reference signal (PT-RS) design for PUCCH with carrier frequencies above 52.6 GHz. Other embodiments may be disclosed and/or claimed.
Abstract:
Among other things, embodiments of the present disclosure are directed to the support of a new class of Reduced Capability (RedCap) New Radio (NR) user equipments (UEs), focusing on the simplification of various multiple input multiple output (MIMO) related features and operations. Other embodiments may be disclosed and/or claimed.