Abstract:
A user equipment (UE) is disclosed. The UE can identify a downlink control channel. The UE can determine when the downlink control channel is an enhanced physical downlink control channel (EPDCCH). The UE can select an enhanced physical uplink control channel (PUCCH) resource allocation for a hybrid automatic retransmission re-quest-acknowledge (HARQ-ACK) transmission when the downlink control channel is the EPDCCH.
Abstract:
This disclosure describes systems, and methods related to determining carrier frequency offset of a wireless communication channel based on a determined phase difference. In some embodiments, an access point is caused to receive one or more streams comprising one or more encoded long training field (LTF) symbols over the wireless communication channel from one or more user devices. The access point then determines a first phase of the wireless communication channel upon receipt of a first LTF symbol, and determines a second phase of the wireless communication channel upon receipt of a second LTF symbol. The access point next determines a phase difference between the first phase and the second phase. Based on the determined phase difference, the access point determines a carrier frequency offset of the wireless communication channel. Lastly, the access point modifies the wireless communication channel based at least in part on the determined CFO.
Abstract:
An apparatus may include a transmitter arranged to wirelessly transmit channel status reports for channels within a transmission band to a base station and a processor. The apparatus may further include a rank adaptation (RA) module operable on the processor to direct the transmitter to send a multiplicity of sub-band channel quality indicator (CQI) reports, each sub-band CQI report comprising a measurement of a respective sub-band of the transmission band and a multiplicity of rank indicator (RI) reports, where each sub-band CQI report is accompanied by an RI report. The apparatus may further include a digital display arranged to display information transmitted via the base station to the apparatus. Other embodiments are disclosed and claimed.
Abstract:
Methods, apparatuses, and systems are described to provide enhanced physical downlink control channel scrambling and demodulation reference signal sequence generation.
Abstract:
Embodiments of the present disclosure describe devices, methods, computer-readable media and systems configurations for uplink transmit power control for transmitting periodic channel state information. Other embodiments may be described and claimed.
Abstract:
Embodiments of an enhanced Node B (eNB) and method for precoding with reduced quantization error are generally described herein. In some embodiments, first and second precoding-matrix indicator (PMI) reports may be received on an uplink channel and a single subband precoder matrix may be interpolated from precoding matrices indicated by both the PMI reports. Symbols for multiple-input multiple output (MIMO) beamforming may be precoded using the interpolated precoder matrix computed for single subband for a multiple user (MU)-MIMO downlink orthogonal frequency division multiple access (OFDMA) transmission. In some embodiments, each of the first and second PMI reports includes a PMI associated with a same subband that jointly describes a recommended precoder.
Abstract:
Technology for blind decoding downlink control information (DCI) from an enhanced physical downlink control channel (EPDCCH) is disclosed. In an example, a user equipment (UE) can include a processor configured to: Recursively attempt to decode the DCI from enhanced control channel elements (ECCE) of the EPDCCH from physical resource block (PRB) region candidates in a PRB set using a selected set of enhanced resource element group (EREG) index maps for the ECCE until the DCI is successfully decoded; and decode the DCI with an EREG index map associated with a same aggregation level used to encode the DCI. Each EREG index map can be configured for a different aggregation level (AL).
Abstract:
Systems and techniques for wireless device-to-device (D2D) communication are provided herein. A D2D group identifier may be included in wireless transmissions within D2D groups. D2D interference mitigation processes may be initiated when a D2D group identifier is detected by a wireless device outside the D2D group.
Abstract:
This disclosure describes systems, methods, and devices related to long range beacon. A device may determine one or more co-located frequency bands with a 6 GHz access point (AP). The device may generate a reduced neighbor report (RNR), wherein the RNR comprises information associated with the 6 GHz AP. The device may determine a minimum bandwidth to transmit a beacon frame using a communication mode. The device may cause to send the beacon frame to a first station device.
Abstract:
An apparatus of a station (STA) includes memory and processing circuitry coupled to the memory. The processing circuitry is configured to encode a capabilities element for transmission to an access point (AP). The capabilities element including a media access control (MAC) capabilities information field indicating a trigger frame MAC padding duration. The processing circuitry decodes an extremely high throughput (EHT) protocol data unit (PPDU) received in response to the capabilities element. The EHT PPDU includes an EHT trigger frame (EHT-TF) in a data portion of the EHT PPDU, a packet extension (PE) field, and a dummy orthogonal frequency division multiplexing (OFDM) symbol extending the PE field. The processing circuitry performs physical layer (PHY) and MAC processing of the EHT PPDU based on a duration of the dummy OFDM symbol.