Abstract:
Solder bumps on electronic components are encapsulated before attachment to a substrate or component carrier. A film of sealing material is pressed against top portions of the solder bumps by pressing with a layer of low durometer flexible material. Encapsulant is positioned between the component and the film and in contact with the bumps, and partially cured. The film and layer of flexible material are removed to expose the top portions of the encapsulated solder bumps.
Abstract:
Apparatus for connecting a first area array component to a substrate with a joining material. The apparatus has a nozzle directing heat toward both the first area array component and the portion of the substrate beneath the first area array component to melt the joining material. An elastic seal contacts the substrate and prevents the heat from affecting other components adjacent the first area array component. The nozzle is pressed against the substrate to restrain warping of the substrate, which might be caused by the heating of the first area array component, and to prevent damage to the substrate. The nozzle can tilt so that it conforms to the surface of the substrate. The first area array component is allowed to move freely in the direction of a plane of the substrate under the surface tension of the molten joining material during heating to center the first area array component.
Abstract:
Integrated circuit chips (18, 42, or 56) are packaged within openings formed in a substrate such as PCMCIA Card (20, 40, or 54), thus allowing compliance with overall width dimension requirements for standardized electronic components. The arrangement has the advantages that thermal coefficient of expansion of the chips and cards match, and that a sturdy, multilayer ceramic substrate is used for electrical connection to electronic devices such as laptops, palmtops, and the like. In addition, a second integrated circuit chip (68) can be connected directly to the embedded chip (56), thereby allowing two chips to be accommodated in a card (54) at the same location and allowing chip-to-chip electrical communication. A variety of electrical bonding methods joining the embedded chip to the card can be employed. In addition, a variety of thermal conduction arrangements can be used for cooling the embedded integrated circuit chip.
Abstract:
A method and apparatus for testing semi-conductor chips is disclosed. The individual semiconductor chips have I/O contacts. The apparatus is provided with an interposer that has contacts corresponding to the contacts on the semiconductor chip. Both the chip and the interposer contacts can be any known type including metal ball, bumps, or tabs or may be provided with dendritic surfaces. The chip contacts are first brought into relative loose temporary contact with the contacts on the interposer and then a compressive force greater that 5 grams per chip contact is applied to the chip to force the chip contacts into good electrical contact with the interposer contacts. Testing of the chip is then performed. The tests may include heating of the chip as well as the application of signals to the chip contacts. After testing the chip is removed from the substrate.
Abstract:
A pin which has a compressive strength less than the tensile strength of a substrate can be fixed into a hole in the substrate when the substrate is held between a stopping block and a clamp by transporting the pin into the hole with sufficient kinetic energy that the pin is forged into a shape defined by the hole upon impacting the stopping block.The pin can be retained in the substrate by forging it into a headed and bulged shape defined by recesses in the stopping block and the clamp on either side of the hole.
Abstract:
An insertion device for two or four pin dual in-line electronic insertion machines which include a radial array of transfer units associated with a picker unit which grasps a component and inserts it into a circuit board.
Abstract:
A toothpaste dispenser having an upper chamber and an inlet port connected for receiving toothpaste and a lower chamber and an outlet port connected for dispensing toothpaste. Suction is created to draw toothpaste into the inlet port, and then forced through the outlet port during actuation. Initiating operation of the suction pulls toothpaste into an upper chamber, and a plunger for expelling the toothpaste from the chamber is operatively connected to the outflow ball check valve for intermittently blocking the flow of toothpaste into and from the toothpaste dispenser. The toothpaste dispenser utilizes ball check valves and two return springs operatively connected to the ball check valves. The toothpaste dispenser actuation has a plunger and also has a portion size adjustment device connected to the plunger for modifying the amount of toothpaste dispensed from the toothpaste dispenser.
Abstract:
The current invention provides a method of attaching a plurality of cores wherein a core has a via with a conductive surface to be electrically connected to a conductive surface on another core. The method provides for applying a metallurgical paste to a conductive surface, removing a portion of the flux from the paste and joining the two cores. The current invention also provides a structure including a plurality of cores wherein a metallurgical paste electrically connects a via with a conductive surface on a core to a conductive surface on another core.
Abstract:
Under the present invention, a contaminant capturing material is positioned within a disk drive. Specifically, the contaminant capturing material is positioned on a suspension, adjacent a slider that hovers proximate a disk within the disk drive when the disk is in rotation. The contaminant capturing material will prevent contaminants from contacting the disk and thereby causing damage. In addition, a set of porous, open celled filters that are coated with the contaminant capturing material can also be provided. If used, the open celled filters are positioned adjacent the disk within an air stream created by a rotation of the disk.
Abstract:
An attachment structure, and an associated method and system for forming the attachment structure. An end of an optical fiber is melted while the end is above, but not touching, an exposed surface of a substrate such that said end becomes molten. The optical fiber is substantially optically transparent to laser radiation of a given wavelength. The molten end is moved toward the exposed surface of the substrate until the end makes physical contact with the exposed surface of the substrate. The moving is performed sufficiently fast so that the end is still molten when the end initially makes the physical contact with the exposed surface of the substrate. The physical contact is maintained for a sufficient length of time to enable the end to bond to the exposed surface of the substrate with no intervening matter between the end and the exposed surface of the substrate.