Abstract:
Methods by which low melting point solder for reflow connection of components is formed on select fine and coarse pitch contacts of a printed circuit board simultaneously. A template with openings to select fine pitch circuit board contacts is placed in contact with fine pitch contacts. The fine and coarse pitch contacts of the board are exposed through holes in a stencil characterized in its ability to withstand solder reflow temperatures, not be wettable by solder, and have a coefficient of thermal expansion relatively matching the printed circuit board. Low temperature solder paste is screen deposited into the stencil openings. The solder paste retained by the template and stencil pattern is shaped during reflow to selectively form on the underlying contacts of the printed circuit board. Thereafter the board is subjected to previously practiced depositions of flux in preparation for fine and coarse pitch component placement and ensuing solder reflow. An alternate practice of the invention involves a method for controlling the volume of solder on select electrically conducting contacts of a substrate. A shaped solder deposit formed by a method which comprises: positioning a template in intimate contact with a substrate for shaping the side wall and height of a solder deposit; depositing solder paste within the confines of said template; heating said deposited solder paste to drive off volatile components and soften solder; and cooling the thus deposited solder to form the shaped solder deposit within said template. The shaped solder deposit formed by the above process.
Abstract:
The invention relates to an oven for reflow soldering objects such as printed circuit boards. A temperature differential is established between the top and bottom surfaces of the board to allow gases liberated from solder paste within through-holes to escape, thereby preventing the formation of voids. The oven provides a flow of gas at a first temperature from an upper gas supplying means to the top side of the board. A flow of gas at a second temperature is directed at the bottom side of the board by a lower gas supplying means. According to one aspect of the invention, a portion of the gas supplied by the upper gas supplying means is captured by the lower gas supply means and is heated or cooled to the second temperature. According to another aspect of the invention, a number of pairs of independantly controllable upper and lower gas supplying means are arranged along a conveyor to provide a temperature profile to perform reflow soldering.
Abstract:
A printed circuit board 50 with reinforced solder joints and having a substrate 11 having mounting pads 14 arranged thereon and a surface mount component 13 having terminations 12, wherein the component 13 is disposed on the substrate 11 with each termination 12 being registered atop a respective mounting pad 14. A solder joint 10 connects each termination 12 with its respective mounting pad 14, and a thin metallic member 30 is disposed within each solder joint 10 between each termination 12 and its respective mounting pad 14. Metallic member 30 is space from both the mounting pad ant the termination and is the same size as the mounting pad or smaller.
Abstract:
An apparatus and a method for attaching conductive balls by which the tact time necessary for the positional recognition of a substrate before the conductive balls are attached onto a substrate can be greatly reduced. A first camera and a second camera are moved together a suction head. After the suction head picks up the conductive balls in a conductive ball supply section, the suction head is moved to a position above a flux supply section so that flux can be attached to the conductive balls 10, and concurrently the first camera recognizes a positional recognition mark on a substrate. Then, during when the suction head is moved to a position above the substrate, the second camera recognizes another positional recognition mark on the substrate. In accordance with the positional recognition conducted above, the suction head is positioned accurately with respect to the substrate, and then the conductive balls are attached onto the electrodes on the substrate.
Abstract:
A method for bonding together at least two conductive members 20, wherein each member includes at least one metallic 22 having a respective bonding area 24. At least one member has a deposition of metallic bonding material 26 attached to each respective conductor proximate each bonding area, and at least one member has a plastic element 28 attached thereto proximate each respective bonding area. The members 20 are positioned in a predetermined orientation, clamped together between an ultrasonic horn and anvil arrangement, with pressure and orthogonal ultrasonic energy being applied thereto so that each plastic element 28 is heated, which in turn melts the bonding material 26. Any plastic element material between the conductors is squeezed away therefrom and the respective conductors 22 are brought into proximity with each other so that a molten joint of bonding material physically contacts each respective conductor. The members are then held together until each joint solidifies, and then the horn and/or anvil are retracted.
Abstract:
An apparatus comprising a pallet for holding a printed circuit board during the solder stenciling process wherein the printed circuit board is held by means of one or more lever arms cut from the pallet material so that pressure is exerted by the arm or arms against the printed circuit board by compression or through tension by the addition of a pin to the lever arm.
Abstract:
A socket connector system for forming a separable electrical contact between a first circuit substrate and a second circuit substrate. A dendrite interposer is disposed between the first circuit substrate and the second circuit substrate. A solder body is disposed between the first circuit substrate and the dendrite interposer. The solder body may include one of several types of solder columns or a solder ball. The solder body has a contact end which engages the dendrite interposer. The contact end has a void. An area of the contact end engages the dendrite interposer when compressive forces are exerted on the first circuit substrate and the second circuit substrate. This provides for all areas of a plurality of contact ends to engage and form reliable electrical contacts with the contact pads.
Abstract:
There are herein disclosed a method for preparing a modified resin which comprises thermal/reaction by the use of a norbornenyl group-containing compound typified by norbornenecarboguanamine or its derivative, a method for preparing an epoxy-modified resin which comprises the step of reacting the above-mentioned modified resin and an epoxide, a flame-retarding method, a thermal stabilization method, a compatibilizing method and a surface modification method which comprise utilizing the modified resin, as well as a coating resin composition and an adhesive resin composition containing the modified resin.According to the preparation methods of the present invention, the deterioration of a material scarcely occurs, and a functional group which is excellent in flame retardancy, thermal stability, compatibility and the like can be introduced to the resins. By the utilization of these techniques, there can be obtained a flame-retardant material having a good char formability, a thermally stable material whose molded articles can inhibit heat deterioration, a material excellent in miscibility between different kinds of resins, a surface-modified material which is excellent in adhesion and coating properties and the like.
Abstract:
A method of forming a solder film on a metallic surface such as a pad of a metallic circuit of a printed circuit board and a lead frame of electronic parts, which is capable of forming a precise and fine pattern and which comprises selectively imparting tackiness to only a predetermined part of the metallic surface by means of a tacky layer-forming solution, adhering a powdered solder to the resulting tacky part, and then melting the solder by heating to thereby form a solder film.
Abstract:
A method of attaching a lead part and a shield case for preventing a high-frequency signal from being leaked to a printed circuit board includes a solder coating step of coating solder so that the solder should cover the whole of an aperture provided through a printed circuit board into which a lead of the lead part is inserted and so that the solder should cover a part of an aperture provided through the printed circuit board into which an engagement portion of the shield case is inserted, a mounting step of inserting the lead of the lead part and the engagement portion of the shield case into the respective apertures to thereby mount the lead part and the shield case on the printed circuit board, and a soldering step of inserting the printed circuit board mounted with the lead part and the shield case into a reflowing furnace and melting the solder to thereby carry out soldering.