摘要:
In a first aspect, a method is provided that includes: forming a plurality of conductive or semiconductive features above a first dielectric material; depositing a second dielectric material above the conductive or semiconductive features; etching a void in the second dielectric material, wherein the etch is selective between the first and the second dielectric material and the etch stops on the first dielectric material; and exposing a portion of the conductive or semiconductive features. Numerous other aspects are provided.
摘要:
A very thin photovoltaic cell is formed by implanting gas ions below the surface of a donor body such as a semiconductor wafer. Ion implantation defines a cleave plane, and a subsequent step exfoliates a thin lamina from the wafer at the cleave plane. A photovoltaic cell, or all or a portion of the base or emitter of a photovoltaic cell, is formed within the lamina. In preferred embodiments, the wafer is affixed to a receiver before the cleaving step. Electrical contact can be formed to both surfaces of the lamina, or to one surface only.
摘要:
There is provided a monolithic three dimensional array of charge storage devices which includes a plurality of device levels, wherein at least one surface between two successive device levels is planarized by chemical mechanical polishing.
摘要:
A method is described for forming a semiconductor device comprising a bipolar transistor having a base region, an emitter region and a collector region, wherein the base region comprises polycrystalline semiconductor material formed by crystallizing silicon, germanium or silicon germanium in contact with a silicide, germanide or silicide germanide. The emitter region and collector region also may be formed from polycrystalline semiconductor material formed by crystallizing silicon, germanium or silicon germanium in contact with a silicide, germanide or silicide germanide forming metal. The polycrystalline semiconductor material is preferably silicided polysilicon, which is formed in contact with C49phase titanium silicide.
摘要:
In a novel nonvolatile memory cell formed above a substrate, a diode is paired with a reversible resistance-switching material, preferably a metal oxide or nitride such as, for example, NixOy, NbxOy, TixOy, HfxOy, AlxOy, MgxOy, CoxOy, CrxOy, VxOy, ZnxOy, ZrxOy, BxNy, and AlxNy. In preferred embodiments, the diode is formed as a vertical pillar disposed between conductors. Multiple memory levels can be stacked to form a monolithic three dimensional memory array. In some embodiments, the diode comprises germanium or a germanium alloy, which can be deposited and crystallized at relatively low temperatures, allowing use of aluminum or copper in the conductors. The memory cell of the present invention can be used as a rewriteable memory cell or a one-time-programmable memory cell, and can store two or more data states.
摘要:
A substantially planar surface coexposes conductive or semiconductor features and a dielectric etch stop material. A second dielectric material, different from the dielectric etch stop material, is deposited on the substantially planar surface. A selective etch etches a hole or trench in the second dielectric material, so that the etch stops on the conductive or semiconductor feature and the dielectric etch stop material. In a preferred embodiment the substantially planar surface is formed by filling gaps between the conductive or semiconductor features with a first dielectric such as oxide, recessing the oxide, filling with a second dielectric such as nitride, then planarizing to coexpose the nitride and the conductive or semiconductor features.
摘要:
A method of operating a nonvolatile memory cell includes providing the nonvolatile memory cell comprising a diode which is fabricated in a first resistivity, unprogrammed state, and applying a forward bias to the diode having a magnitude greater than a minimum voltage required for programming the diode to switch the diode to a second resistivity, programmed state. The second resistivity state is lower than the first resistivity state.
摘要:
A photovoltaic assembly comprises a thin semiconductor lamina and a receiver element, where the receiver element serves as a superstrate in the completed device. The photovoltaic assembly includes a photovoltaic cell. The photovoltaic cell is a back-contact cell; photocurrent passes into and out of the back surface of the cell, but does not pass through the light-facing surface. The lamina is typically substantially crystalline and has a thickness less than about 100 microns, in some embodiments 10 microns or less.
摘要:
A method is described for forming a thin film transistor having its current-switching region in polycrystalline semiconductor material which has been crystallized in contact with titanium silicide, titanium silicide-germanide, or titanium germanide. The titanium silicide, titanium silicide-germanide, or titanium germanide is formed having feature size no more than 0.25 micron in the smallest dimension. The small feature size tends to inhibit the phase transformation from C49 to C54 phase titanium silicide. The C49 phase of titanium silicide has a very close lattice match to silicon, and thus provides a crystallization template for the silicon as it forms, allowing formation of large-grain, low-defect silicon. Titanium does not tend to migrate through the silicon during crystallization, limiting the danger of metal contamination. In preferred embodiments, the transistors thus formed may be, for example, field-effect transistors or bipolar junction transistors.
摘要:
A method of making a semiconductor device includes forming at least one device layer over a substrate, forming at least two spaced apart features over the at least one device layer, forming sidewall spacers on the at least two features, filling a space between a first sidewall spacer on a first feature and a second sidewall spacer on a second feature with a filler feature, selectively removing the sidewall spacers to leave the first feature, the filler feature and the second feature spaced apart from each other, and etching the at least one device layer using the first feature, the filler feature and the second feature as a mask.