Abstract:
The present invention relates to a light-emitting diode having enhanced liability. More particularly, a light-emitting diode has enhanced liability in a high-temperature and/or high humidity environment as well as in a room-temperature environment and can have decrease in light-emitting characteristics prevented. In addition, the present invention relates to a light-emitting diode comprising a structure which enables enhancing of light reflection and having enhanced light extraction efficiency by means of light reflection through the structure.
Abstract:
A light emitting diode includes a first conductive type semiconductor layer and a mesa disposed on the first conductive type semiconductor layer. The mesa includes an active layer and a second conductive type semiconductor layer. A reflective electrode is disposed on the mesa to be in ohmic-contact with the second conductive type semiconductor layer. A current spreading layer is disposed on the mesa and the reflective electrode. A first portion of the current spreading layer is in ohmic-contact with an upper surface of an end portion of the first conductive type semiconductor layer. A lower insulating layer is disposed between the mesa and the current spreading layer, and the reflective electrode and the current spreading layer. An upper insulating layer covers the current spreading layer and includes a first hole exposing a second portion of the current spreading layer that is disposed on an upper portion of the mesa.
Abstract:
An epitaxial wafer includes a growth substrate, a mask pattern disposed on the growth substrate and comprising a masking region and an opening region, and an epitaxial layer covering the mask pattern and including a first void disposed on the masking region. The first void includes a lower void disposed between a lower surface of the epitaxial layer and the masking region, and an upper void extending from the lower void into the epitaxial layer, the lower void having a greater width than the upper void.
Abstract:
The present invention provides a method for separating an epitaxial layer from a growth substrate, comprising growing an epitaxial layer including a plurality of layers on a growth substrate; etching an edge of at least one layer in the epitaxial layer to form a notch; forming a bonding layer on the epitaxial layer, contacting a bonding substrate onto the bonding layer, and then heating the bonding layer to a bonding temperature for joining the epitaxial layer and the bonding substrate; and cooling the bonding layer after the heating of the boding layer, so that the epitaxial layer and the bonding substrate are joined by the bonding layer, and the epitaxial layer is separated from the growth substrate, wherein the separating the epitaxial layer from the growth substrate starts with separation from the at least one layer where the notch is formed.
Abstract:
A light-emitting diode including a substrate, a first semiconductor layer disposed on the substrate, an active layer disposed on the first semiconductor layer, a second semiconductor layer disposed on the active layer and having a conductivity type different than that of the first semiconductor layer, and a reflective pattern disposed on the second semiconductor layer and configured to reflect light emitted from the active layer, the reflective pattern having heterogeneous metal layers and configured to absorb stress caused by differences in coefficient of thermal expansion between the heterogeneous metal layers.
Abstract:
A method of fabricating a semiconductor device, the method including: forming a first mask pattern including a masking region and an open region on a substrate; forming a sacrificial layer to cover the substrate and the first mask pattern; patterning the sacrificial layer to form a seed layer and to expose the first mask pattern; forming a second mask pattern on the exposed first mask pattern; forming an epitaxial layer on the seed layer and the second mask pattern, and forming a void between the second mask pattern and the epitaxial layer; and separating the substrate from the epitaxial layer.