摘要:
A LDMOS transistor having a channel region located between an outer boundary of an n-type region and an inner boundary of a p-body region. A width of the LDMOS channel region is less than 80% of a distance between an outer boundary of an n+-type region and the inner boundary of a p-body region. Also, a method for making a LDMOS transistor where the n-type dopants are implanted at an angle that is greater than an angle used to implant the p-type dopants. Furthermore, a VDMOS having first and second channel regions located between an inner boundary of a first and second p-body region and an outer boundary of an n-type region of the first and second p-body regions. The width of the first and second channel regions of the VDMOS is less than 80% of a distance between the inner boundary of the first and second p-body regions and an outer boundary of an n+-type region of the first and second p-body regions. Moreover, a method for making a VDMOS transistor where the n-type dopants are implanted at an angle that is greater than an angle used to implant the p-type dopants.
摘要:
A method is provided of forming a semiconductor device. A substrate is provided having a dielectric layer formed thereover. The dielectric layer covers a protected region of the substrate, and has a first opening exposing a first unprotected region of the substrate. A first dopant is implanted into the first unprotected region through the first opening in the dielectric layer, and into the protected region through the dielectric layer.
摘要:
A LDMOS transistor having a channel region located between an outer boundary of an n-type region and an inner boundary of a p-body region. A width of the LDMOS channel region is less than 80% of a distance between an outer boundary of an n+-type region and the inner boundary of a p-body region. Also, a method for making a LDMOS transistor where the n-type dopants are implanted at an angle that is greater than an angle used to implant the p-type dopants. Furthermore, a VDMOS having first and second channel regions located between an inner boundary of a first and second p-body region and an outer boundary of an n-type region of the first and second p-body regions. The width of the first and second channel regions of the VDMOS is less than 80% of a distance between the inner boundary of the first and second p-body regions and an outer boundary of an n+-type region of the first and second p-body regions. Moreover, a method for making a VDMOS transistor where the n-type dopants are implanted at an angle that is greater than an angle used to implant the p-type dopants.
摘要:
Extended-drain MOS transistor devices and fabrication methods are provided, in which a drift region of a first conductivity type is formed between a drain of the first conductivity type and a channel. The drift region comprises first and second portions, the first portion extending partially under a gate structure between the channel and the second portion, and the second portion extending laterally between the first portion and the drain, wherein the first portion of the drift region has a concentration of first type dopants higher than the second portion.
摘要:
An integrated circuit (IC) chip, mounted on a leadframe, has a network of power distribution lines deposited on the surface of the chip so that these lines are located over active components of the IC, connected vertically by metal-filled vias to selected active components below the lines, and also by conductors to segments of the leadframe. Furthermore, the lines are fabricated with a sheet resistance of less than 1.5 mΩ/· and the majority of the lines is patterned as straight lines between the vias and the conductors, respectively.
摘要:
High side extended-drain MOS driver transistors (T2) are presented in which an extended drain (108, 156) is separated from a first buried layer (120) by a second buried layer (130), wherein an internal or external diode (148) is coupled between the first buried layer (120) and the extended drain (108, 156) to increase the breakdown voltage.
摘要:
The present invention provides a system for efficiently producing versatile, high-precision MOS device structures in which straight regions dominate the device's behavior, providing minimum geometry devices that precisely match large devices, in an easy, efficient and cost-effective manner. The present invention provides methods and apparatus for producing double diffused semiconductor devices that minimize performance impacts of end cap regions. The present invention provides a MOS structure having a moat region (404, 516, 616), and an oxide region (414, 512, 608) overlapping the moat region. A double-diffusion region (402, 504, 618) is formed within the oxide region, having end cap regions (406, 502, 620) that are effectively deactivated utilizing geometric and implant manipulations.
摘要:
The present invention provides a system for efficiently producing versatile, high-precision MOS device structures in which straight regions dominate the device's behavior, providing minimum geometry devices that precisely match large devices, in an easy, efficient and cost-effective manner. The present invention provides methods and apparatus for producing double diffused semiconductor devices that minimize performance impacts of end cap regions. The present invention provides a MOS structure having a moat region (404, 516, 616), and an oxide region (414, 512, 608) overlapping the moat region. A double-diffusion region (402, 504, 618) is formed within the oxide region, having end cap regions (406, 502, 620) that are effectively deactivated utilizing geometric and implant manipulations.
摘要:
An LDMOS device (10, 20, 50, 60) that is made with minimal feature size fabrication methods, but overcomes potential problems of misaligned Dwells (13). The Dwell (13) is slightly overstated so that its n-type dopant is implanted past the source edge of the gate region (18), which permits the n-type region of the Dwell to diffuse under the gate region (18) an sufficient distance to eliminate misalignment effects.
摘要:
An electrostatic discharge (ESD) device for protecting an input/output terminal of a circuit, the device comprising a first transistor with an integrated silicon-controlled rectifier (SCR) coupled between the input/output (I/O) terminal of the circuit and a node and a second transistor with an integrated silicon-controlled rectifier coupled between the node and a negative terminal of a supply voltage, wherein the silicon-controlled rectifier of the first transistor triggers in response to a negative ESD voltage and the silicon-controlled rectifier of the second transistor triggers in response to a positive ESD voltage.