Abstract:
The integrated circuit package according to the present invention comprises: a plurality of functioning units operable to perform processing on input data and output a result of the processing; a plurality of antenna units each of which is positioned to (i) receive radio-transmitted data from at least another one of the plurality of antenna units by radio and (ii) transmit data to at least another one of the plurality of antenna units by radio; a first switching unit operable to selectively connect output of a first functioning unit, which is one of the plurality of functioning units, and a first antenna unit, which is one of the plurality of antenna units; and a second switching unit operable to selectively connect a second antenna unit, which is positioned to receive the radio-transmitted data from the first antenna unit by radio, and input of a second functioning unit different from the first functioning unit.
Abstract:
An object of the present invention is to provide a light-emitting device with a high output and a high efficiency by improving the efficiency for utilizing light emitted from a semiconductor light-emitting element.The inventive semiconductor light-emitting device comprises a package substrate, a sub-mount provided on the package substrate, a semiconductor light-emitting element provided on the sub-mount, and a reflector surrounding the sub-mount and the semiconductor light-emitting element, wherein the positions and sizes of the sub-mount, light-emitting element and reflector satisfy the following relationship (A) on a cross section perpendicular to the package substrate that passes through the center of the semiconductor light-emitting element, r−1s≦(hs−d)×(1s−1c)/hc (A) wherein r, 1s and 1c are distances from the drooping portion of the reflector, from the outer circumference of the sub-mount and from the outer circumference of the semiconductor light-emitting element to the center of the semiconductor light-emitting element, respectively, hs and d are heights of the sub-mount and of the drooping portion of the reflector, respectively, and hc is a height of the upper surface of the semiconductor light-emitting element from the upper surface of the sub-mount.
Abstract:
A weather strip includes a bottom wall that faces or is in contact with an end face of a fixed window glass that closes a window opening of a side door. An outer wall extends from the bottom wall on an outer side of the vehicle body with respect to the fixed window glass, and an inner wall extends from the bottom wall on an inner side of the vehicle body with respect to the fixed window glass so that the inner wall and the outer wall sandwich a peripheral portion of the fixed window glass in a thickness direction. The inner wall is provided with a spacing groove for creating a space between the fixed window glass and the inner wall.
Abstract:
A discharge-generation control unit applies at least a preliminary-discharge voltage pulse and a main-discharge voltage pulse between a wire electrode and a work. A discharge-position determining unit determines a discharge position from results of measurement by a plurality of current measuring units. A machining-energy adjusting unit adjusts machining energy generated by the main-discharge voltage pulse based on a discharge position determined before applying the main-discharge voltage pulse, and reflects a result of the adjustment on the generation of an electric discharge by feeding the result to the discharge-generation control unit.
Abstract:
A pin layout which prevents degradation of a frequency characteristic of a low noise amplifier and a receiving mixer included in a semiconductor integrated circuit for dual-band transmission/reception wherein the circuit of the low noise amplifier is provided at a position where the distance from the end of a pin outside the package of the low noise amplifier to the pad is the shortest; ground pins of two low noise amplifiers and the high frequency signal pins are arranged respectively so as not to be adjacent to each other; the power source and ground pin of the low noise amplifier, and the power source and ground pin of the bias circuit are respectively separated; and high frequency signal wires do not intersect each other.
Abstract:
A method for forming a conductive layer pattern by selectively depositing droplets containing conductive material onto a porous receiving layer. Much of the conductive material is left on the surface for forming wiring patterns but some of it permeates the pockets or voids in the receiving layer and can be used, for example, to provide interlayer connections in laminated wiring boards. Preferably, the conductive material is provided by fine conductive particles, organometallic compounds or mixtures thereof.
Abstract:
Provided is a method of manufacturing a semiconductor device having an ONO film composed of a bottom silicon oxide film, a silicon nitride film and a top silicon oxide film over a substrate. The top silicon oxide film of the ONO film is formed in the following manner. A silicon oxide film is formed over the silicon nitride film, and then a hydrogen gas and an oxygen gas are reacted over the silicon nitride film by heating the silicon nitride film (substrate) while reducing the pressure from the atmospheric pressure to grow the silicon oxide film into the top silicon oxide film. According to the present invention, a silicon oxide film having good uniformity and fewer defects can be formed over a silicon-containing underlayer.
Abstract:
Provided is a semiconductor device having, over a semiconductor substrate, a control gate electrode and a memory gate electrode which are adjacent to each other and constitute a nonvolatile memory. The height of the memory gate electrode is lower than the height of the control gate electrode. A metal silicide film is formed over the upper surface of the control gate electrode, but not formed over the upper surface of the memory gate electrode. The memory gate electrode has, over the upper surface thereof, a sidewall insulating film made of silicon oxide. This sidewall insulating film is formed in the same step as that for the formation of respective sidewall insulating films over the sidewalls of the memory gate electrode and the control gate electrode. The present invention makes it possible to improve the production yield and performance of the semiconductor device having a nonvolatile memory.
Abstract:
A MISFET capable of a high speed operation includes a metal silicide layer in a high concentration region aligned with a gate side wall layer on a self-alignment basis. A MISFET which can be driven at a high voltage includes an LDD portion having a width greater than the width of the side wall layer, a high concentration region in contact with the LDD portion and a metal silicide layer in the high concentration region.
Abstract:
An encoding unit (44) individually encodes display image-forming image data, i.e., image data from an image input unit (2), decoded data from a decoding unit (46), and graphics image data from a graphics-generating unit (47). A storing unit (45) stores the individually encoded image data. As a result, when a user intends to reuse, more specifically, replay, edit, or transmit the stored display image, the user can selectively decode required image elements, thereby reusing the selectively decoded image elements. This feature provides improved user-friendliness.