Abstract:
A method of forming a semiconductor structure includes following steps. First of all, a patterned hard mask layer having a plurality of mandrel patterns is provided. Next, a plurality of first mandrels is formed on a substrate through the patterned hard mask. Following these, at least one sidewall image transferring (SIT) process is performed. Finally, a plurality of fins is formed in the substrate, wherein each of the fins has a predetermined critical dimension (CD), and each of the mandrel patterns has a CD being 5-8 times greater than the predetermined CD.
Abstract:
A method for manufacturing a semiconductor device having metal gate includes following steps. A substrate is provided. At least a transistor including a dummy gate is formed on the substrate and the transistor is embedded in an interlayer dielectric (ILD) layer. A first removal process is performed to remove a portion of the dummy gate to form a first recess in the transistor. An etching process is subsequently performed to remove a portion of the ILD layer to widen the first recess and to form a widened first recess. A second removal process is subsequently performed to remove the dummy gate entirely and to form a second recess in the transistor. A metal gate is formed in the second recess and followed by forming an insulating cap layer on the metal gate.
Abstract:
A manufacturing method of a pattern transfer mask includes the following steps. A basic mask is provided. The basic mask includes a plurality of patterns formed by a patterned absorber layer on a substrate according to a first writing layout. A photolithographic process is then performed by the basic mask to obtain individual depth of focus (iDoF) ranges of each of the patterns and a usable depth of focus (UDoF) range of the patterns. At least one constrain pattern dominating the UDoF range is selected from the patterns in the basic mask. The rest of the patterns except the constrain pattern are non-dominating patterns. A second writing layout is then generated for reducing a thickness of the patterned absorber layer in the constrain pattern or in the non-dominating patterns.
Abstract:
A semiconductor device is disclosed. The semiconductor device includes: a substrate having a gate structure thereon and a first interlayer dielectric (ILD) layer surrounding the gate structure; a first hard mask on the gate structure; and a second hard mask on the gate structure, wherein the first hard mask is adjacent to two sides of the second hard mask and the first hard mask and the first hard mask comprises silicon nitride.
Abstract:
A method for fabricating metal interconnect structure is disclosed. The method includes the steps of: providing a substrate having a first inter-metal dielectric (IMD) layer thereon; forming a metal interconnection in the first IMD layer; removing part of the first IMD layer; forming a spacer adjacent to the metal interconnection; and using the spacer as mask to remove part of the first IMD layer for forming an opening in the first IMD layer.
Abstract:
The present invention provides a photo-mask for manufacturing structures on a semiconductor substrate, which comprises a photo-mask substrate, a first pattern, a second pattern and a forbidden pattern. A first active region, a second active region are defined on the photo-mask substrate, and a region other than the first active region and the second active region are defined as a forbidden region. The first pattern is disposed in the first active region and corresponds to a first structure on the semiconductor substrate. The second pattern is disposed in the second active region and corresponds to a second structure on the semiconductor substrate. The forbidden pattern is disposed in the forbidden region, wherein the forbidden pattern has a dimension beyond resolution capability of photolithography and is not used to form any corresponding structure on the semiconductor substrate. The present invention further provides a method of manufacturing semiconductor structures.
Abstract:
An overlay measurement method includes providing three predetermined patterns, including a first predetermined pattern, a second predetermined pattern and a third predetermined pattern. An inspection process is then performed on said three predetermined patterns, to obtain three image points, including a first image point, a second image point and a third image point respectively. Next, a defining process is performed to define a default position, and a calculating process is performed to obtain a real offset value x=(p−q)*(c−a)/(a−b)+p.
Abstract:
A semiconductor device and a method of forming the same, the semiconductor device includes a substrate, a plurality of fin shaped structures and an insulating layer. The substrate has a fin field-effect transistor (finFET) region, a first region, a second region and a third region. The first region, the second region and the third region have a first surface, a second surface, and a third surface, respectively, where the first surface is relatively higher than the second surface and the second surface is relatively higher than the third surface. The fin shaped structures are disposed on a surface of the fin field-effect transistor region. The insulating layer covers the first surface, the second surface and the third surface.
Abstract:
A shallow trench isolation (STI) and method of forming the same is provided. The STI structure includes an upper insulating portion and a lower insulating portion, where the lower insulating portion includes a first insulator and an insulating layer surrounding the first insulator, the upper insulating portion includes a second insulator and a buffer layer surrounding the second insulator. A part of the buffer layer interfaces between the first insulator and the second insulator, and the outer sidewall of the buffer layer and the sidewall of the first insulator are leveled.
Abstract:
A shallow trench isolation (STI) and method of forming the same is provided. The STI structure includes an upper insulating portion and a lower insulating portion, where the lower insulating portion includes a first insulator and an insulating layer surrounding the first insulator, the upper insulating portion includes a second insulator and a buffer layer surrounding the second insulator. Apart of the buffer layer interfaces between the first insulator and the second insulator, and the outer sidewall of the buffer layer and the sidewall of the first insulator are leveled.