摘要:
We have discovered that controlling a combination of PECVD deposition process parameters during deposition of silicon-containing thin film provides improved control over surface standing wave effects. By minimizing surface standing wave effects, the uniformity of film properties (particularly film thickness) across a substrate surface onto which the films have been deposited is improved.
摘要:
Methods for depositing a gate insulator layer and a semiconductor layer onto a large area substrate with improved film uniformity, device mobility and stability are provided. The film properties of the gate insulator layer and the semiconductor layer are selected so that higher electron mobility (greater than 0.7 centimeters squared per voltage per second) is obtained, thereby efficiently enhancing the performance and stability of TFT devices. Improvements in film uniformity may also be realized.
摘要:
A method and apparatus for depositing a material layer onto a substrate is described. The method includes placing the substrate in a process chamber, delivering a mixture of precursors for the material layer into the process chamber, delivering a hydrogen gas into the process chamber to improve water-barrier performance of the material layer, controlling the temperature of the substrate to a temperature of about 100° C. or lower, applying an electric field and generating a plasma inside the process chamber, and depositing the material layer on the substrate. The material layer can be used as an encapsulating layer for various display applications which require low temperature deposition process due to thermal instability of underlying materials used. The encapsulating layer thus deposited provides reduced surface roughness, improved water-barrier performance which can be applied to any substrate type including wafer, glass, and plastic film (e.g., PET, PEN, etc.) and any substrate size in the flat panel industry.
摘要:
We have developed a method of PECVD depositing a-SiNx:H films which are useful in a TFT device as gate dielectric and passivation layers, when a series of TFT devices are arrayed over a substrate having a surface area larger than about 1 m2, which may be in the range of about 4.1 m2, and even as large as 9 m2. The a-SiNx:H films provide a uniformity of film thickness and uniformity of film properties, including chemical composition, which are necessary over such large substrate surface areas. The films produced by the method are useful for both liquid crystal active matrix displays and for organic light emitting diode control.
摘要:
A method of processing a substrate in a processing chamber is provided. The method generally includes applying a microwave power to an antenna coupled to a microwave source disposed within the processing chamber, wherein the microwave source is disposed relatively above a gas feeding source configured to provide a gas distribution coverage covering substantially an entire surface of the substrate, and exposing the substrate to a microwave plasma generated from a processing gas provided by the gas feeding source to deposit a silicon-containing layer on the substrate at a temperature lower than about 200 degrees Celsius, the microwave plasma using a microwave power having a power density of about 500 milliWatts/cm2 to about 5,000 milliWatts/cm2 at a frequency of about 1 GHz to about 10 GHz.
摘要:
A method and apparatus for processing a substrate is provided. In one embodiment, the apparatus is in the form of a processing chamber that includes a chamber body having a processing volume defined therein. A substrate support, a gas delivery tube assembly and a plasma line source are disposed in the processing volume. The gas delivery tube assembly includes an inner tube is disposed in an outer tube. The inner tube has a passage for flowing a cooling fluid therein. The outer tube has a plurality of gas distribution apertures for providing processing gas into the processing volume.
摘要:
Methods for forming a microcrystalline silicon layer in a thin film transistor structure are provided. In one embodiment, a method for forming a microcrystalline silicon layer includes providing a substrate in a processing chamber, supplying a first gas mixture having a hydrogen containing gas to a silicon containing gas flow rate ratio greater than about 200:1 into the processing chamber, maintaining a first process pressure greater than about 6 Torr in the processing chamber to deposit a first microcrystalline silicon containing layer in presence of a plasma formed from the first gas mixture, supplying a second gas mixture into the processing chamber, and maintaining a second process pressure less than about 5 Torr in the processing chamber to deposit a second microcrystalline silicon containing layer in presence of a plasma formed from the second gas mixture.
摘要:
A method and apparatus for depositing a material layer to treat and condition a substrate, such as a fuel cell part, is described. The method includes depositing a hydrophilic material layer on a portion of the surface of the substrate in a process chamber from a mixture of precursors of the hydrophilic material layer. In addition, the method includes reducing a fluid contact angle of the substrate surface. The hydrophilic material layer comprises a wet etch rate of less than about 0.03 Å/min in the presence of about 10 ppm of hydrofluoric acid in water. The material layer can be used to condition various parts of a fuel cell useful in applications to generate electricity.
摘要:
Embodiments of the present invention relate to methods for depositing an amorphous film that may be suitable for using in a NIP photodiode in display applications. In one embodiment, the method includes providing a substrate into a deposition chamber, supplying a gas mixture having a hydrogen gas to silane gas ratio by volume greater than 4 into the deposition chamber, maintaining a pressure of the gas mixture at greater than about 1 Torr in the deposition chamber, and forming an amorphous silicon film on the substrate in the presence of the gas mixture, wherein the amorphous silicon film is configured to be an intrinsic-type layer in a photodiode sensor.