摘要:
Methods for forming a microcrystalline silicon layer in a thin film transistor structure are provided. In one embodiment, a method for forming a microcrystalline silicon layer includes providing a substrate in a processing chamber, supplying a gas mixture having a hydrogen-based gas, a silicon-based gas and an argon gas into the processing chamber, the gas mixture having a volumetric flow ratio of the hydrogen-based gas to the silicon-based gas greater than about 100:1, wherein a volumetric flow ratio of the argon gas to the total combined flow of hydrogen-based gas and the silicon-based gas is between about 5 percent and about 40 percent, and maintaining a process pressure of the gas mixture within the processing chamber at greater than about 3 Torr while depositing a microcrystalline silicon layer on the substrate.
摘要:
Methods for forming a microcrystalline silicon layer in a thin film transistor structure are provided. In one embodiment, a method for forming a microcrystalline silicon layer includes providing a substrate in a processing chamber, supplying a gas mixture having a hydrogen-based gas, a silicon-based gas and an argon gas into the processing chamber, the gas mixture having a volumetric flow ratio of the hydrogen-based gas to the silicon-based gas greater than about 100:1, wherein a volumetric flow ratio of the argon gas to the total combined flow of hydrogen-based gas and the silicon-based gas is between about 5 percent and about 40 percent, and maintaining a process pressure of the gas mixture within the processing chamber at greater than about 3 Torr while depositing a microcrystalline silicon layer on the substrate.
摘要:
Methods for forming a microcrystalline silicon layer in a thin film transistor structure are provided. In one embodiment, a method for forming a microcrystalline silicon layer includes providing a substrate in a processing chamber, supplying a first gas mixture having a hydrogen containing gas to a silicon containing gas flow rate ratio greater than about 200:1 into the processing chamber, maintaining a first process pressure greater than about 6 Torr in the processing chamber to deposit a first microcrystalline silicon containing layer in presence of a plasma formed from the first gas mixture, supplying a second gas mixture into the processing chamber, and maintaining a second process pressure less than about 5 Torr in the processing chamber to deposit a second microcrystalline silicon containing layer in presence of a plasma formed from the second gas mixture.
摘要:
Embodiments of the present invention relate to methods for depositing an amorphous film that may be suitable for using in a NIP photodiode in display applications. In one embodiment, the method includes providing a substrate into a deposition chamber, supplying a gas mixture having a hydrogen gas to silane gas ratio by volume greater than 4 into the deposition chamber, maintaining a pressure of the gas mixture at greater than about 1 Torr in the deposition chamber, and forming an amorphous silicon film on the substrate in the presence of the gas mixture, wherein the amorphous silicon film is configured to be an intrinsic-type layer in a photodiode sensor.
摘要:
Embodiments of the present invention relate to methods for depositing an amorphous film that may be suitable for using in a NIP photodiode in display applications. In one embodiment, the method includes providing a substrate into a deposition chamber, supplying a gas mixture having a hydrogen gas to silane gas ratio by volume greater than 4 into the deposition chamber, maintaining a pressure of the gas mixture at greater than about 1 Torr in the deposition chamber, and forming an amorphous silicon film on the substrate in the presence of the gas mixture, wherein the amorphous silicon film is configured to be an intrinsic-type layer in a photodiode sensor.
摘要:
Methods for processing a substrate are described herein. Methods can include positioning a substrate in a processing chamber, maintaining the processing chamber at a temperature below 400° C., flowing a reactant gas comprising either a silicon hydride or a silicon halide and an oxidizing precursor into the process chamber, applying a microwave power to create a microwave plasma from the reactant gas, and depositing a silicon oxide layer on at least a portion of the exposed surface of a substrate.
摘要:
Methods for forming a microcrystalline silicon layer in a thin film transistor structure are provided. In one embodiment, a method for forming a microcrystalline silicon layer includes providing a substrate in a processing chamber, supplying a first gas mixture having a hydrogen containing gas to a silicon containing gas flow rate ratio greater than about 200:1 into the processing chamber, maintaining a first process pressure greater than about 6 Torr in the processing chamber to deposit a first microcrystalline silicon containing layer in presence of a plasma formed from the first gas mixture, supplying a second gas mixture into the processing chamber, and maintaining a second process pressure less than about 5 Torr in the processing chamber to deposit a second microcrystalline silicon containing layer in presence of a plasma formed from the second gas mixture.
摘要:
Embodiments of a gas diffuser plate for distributing gas in a processing chamber are provided. The gas distribution plate includes a diffuser plate having an upstream side and a downstream side, and a plurality of gas passages passing between the upstream and downstream sides of the diffuser plate. The gas passages include hollow cathode cavities at the downstream side to enhance plasma ionization. The depths, the diameters, the surface area and density of hollow cathode cavities of the gas passages that extend to the downstream end can be gradually increased from the center to the edge of the diffuser plate to improve the film thickness and property uniformity across the substrate. The increasing diameters, depths and surface areas from the center to the edge of the diffuser plate can be created by bending the diffuser plate toward downstream side, followed by machining out the convex downstream side. Bending the diffuser plate can be accomplished by a thermal process or a vacuum process. The increasing diameters, depths and surface areas from the center to the edge of the diffuser plate can also be created computer numerically controlled machining. Diffuser plates with gradually increasing diameters, depths and surface areas of the hollow cathode cavities from the center to the edge of the diffuser plate have been shown to produce improved uniformities of film thickness and film properties.
摘要:
An α-SiNx:H gate dielectric film deposited over a substrate surface having a surface area larger than 100 cm×100 cm, wherein said α-SiNx:H gate dielectric film exhibits a film thickness which varies by less than about 20% over said surface area, a film density which varies by less than about 17% over said surface area, and wherein said film exhibits a Si—H bonded structure content of less than about 15 atomic % over said surface area.
摘要:
Methods and apparatus having a gradient spacing created between a substrate support assembly and a gas distribution plate for depositing a silicon film for solar cell applications are provided. In one embodiment, an apparatus for depositing films for solar cell applications may include a processing chamber, a substrate support disposed in the processing chamber and configured to support a quadrilateral substrate thereon, and a gas distribution plate disposed in the processing chamber above the substrate support, wherein a bottom surface of the gas distribution plate has a perimeter that includes edges and corners, and wherein the corners of the gas distribution plate are closer to the substrate support than the edges of the gas distribution plate.