Abstract:
The invention presented is a method for catalyzing fuel for powering internal combustion engines. The method comprises admixing with fuel an additive composition comprising at least one fuel-soluble platinum group metal compound in an amount effective to supply from 0.01 to 1.0 parts per million of platinum group metal per part of fuel.
Abstract:
A composition comprising:(A) a first component selected from the group consisting of:(i) an oil-soluble ethylene backbone polymer having a number average molecular weight in the range of about 500 to about 50,000;(ii) a hydrocarbyl-substituted phenol of the formula(R*).sub.a --Ar--(OH).sub.b I wherein R* is a hydrocarbyl group selected from the group consisting of hydrocarbyl groups of from about 8 to about 30 carbon atoms and polymers of at least 30 carbon atoms, Ar is an aromatic moiety having 0 to 4 optional substituents selected from the group consisting of lower alkyl, lower alkoxyl, nitro, halo or combinations of two or more of said optional substituents, and a and b are each independently an integer of 1 up to 5 times the number of aromatic nuclei present in Ar with the proviso that the sum of a and b does not exceed the unsatisfied valences of Ar;(iii) mixtures of (i) and (ii); and(B) as a second component, the reaction product of (B)(I) a hydrocarbyl-substituted carboxylic acylating agent with (B)(II) one or more amines, one or more alcohols, or a mixture of one or more amines and/or one or more alcohols, the hydrocarbyl substituent of said agent (B)(I) being selected from the group consisting of(i') one or more mono-olefins of from about 8 to about 30 carbon atoms;(ii') mixtures of one or more mono-olefins of from about 8 to about 30 carbon atoms with one or more olefin polymers of at least 30 carbon atoms selected from the group consisting of polymers of mono-1-olefins of from 2 to 8 carbon atoms, or the chlorinated or brominated analogs of such polymers; and(iii') one or more olefin polymers of at least 30 carbon atoms selected from the group consisting of(a) polymers of mono-olefins of from about 8 to about 30 carbon atoms;(b) interpolymers of mono-1-olefins of from 2 to 8 carbon atoms with mono-olefins of from about 8 to about 30 carbon atoms;(c) one or more mixtures of homopolymers and/or interpolymers of mono-1-olefins of from 2 to 8 carbon atoms with homopolymers and/or interpolymers of mono-olefins of from about 8 to about 30 carbon atoms; and(d) chlorinated or brominated analogs of (a), (b), or (c).
Abstract:
A composition comprising:(A) a first component selected from the group consisting of:(i) an oil-soluble ethylene backbone polymer having a number average molecular weight in the range of about 500 to about 50,000;(ii) a hydrocarbyl-substituted phenol of the formula(R*).sub.a --Ar--(OH).sub.b I wherein R* is a hydrocarbyl group selected from the group consisting of hydrocarbyl groups of from about 8 to about 30 carbon atoms and polymers of at least 30 carbon atoms, Ar is an aromatic moiety having 0 to 4 optional substituents selected from the group consisting of lower alkyl, lower alkoxyl, nitro, halo or combinations of two or more of said optional substituents, and a and b are each independently an integer of 1 up to 5 times the number of aromatic nuclei present in Ar with the proviso that the sum of a and b does not exceed the unsatisfied valences of Ar;(iii) mixtures of (i) and (ii); and(B) as a second component, the reaction product of (B)(I) a hydrocarbyl-substituted carboxylic acylating agent with (B)(II) one or more amines, one or more alcohols, or a mixture of one or more amines and/or one or more alcohols, the hydrocarbyl substituent of said agent (B)(I) being selected from the group consisting of(i') one or more mono-olefins of from about 8 to about 30 carbon atoms;(ii') mixtures of one or more mono-olefins of from about 8 to about 30 carbon atoms with one or more olefin polymers of at least 30 carbon atoms selected from the group consisting of polymers of mono-1-olefins of from 2 to 8 carbon atoms, or the chlorinated or brominated analogs of such polymers; and(iii') one or more olefin polymers of at least 30 carbon atoms selected from the group consisting of(a) polymers of mono-olefins of from about 8 to about 30 carbon atoms;(b) interpolymers of mono-1-olefins of from 2 to 8 carbon atoms with mono-olefins of from about 8 to about 30 carbon atoms;(c) one or more mixtures of homopolymers and/or interpolymers of mono-1-olefins of from 2 to 8 carbon atoms with homopolymers and/or interpolymers of mono-olefins of from about 8 to about 30 carbon atoms; and(d) chlorinated or brominated analogs of (a), (b), or (c).
Abstract:
Borated adducts of alkyl diamines, alkoxides and lower carboxylic acids impart effective multifunctional friction reducing and high temperature stabilizing characteristics to compositions comprising hydrocarbyl lubricants and fuels.
Abstract:
Transition metal complexes of thiobis(alkylphenols) provide an increase in the research octane number of fuels suitable for use in internal combustion engines.
Abstract:
Nitrogen oxygenates and particulate emissions in combustion engines are effectively suppressed when a minor effective amount of a transition metal energy transfer additive, e.g., iron, cobalt and copper complexed with a thiobisphenol are added to the engine's fuel.
Abstract:
Complexed inorganic lithium salts are prepared by mixing an inorganic lithium salt such as a lithium halide with a monomeric or polymeric organic complexing agent which contains at least one nitrogen atom and at least one other atom which is nitrogen, oxygen, phosphorus or sulfur. The complexing agent may be nonchelating (e.g. triethylenediamine) or chelating in nature. The chelating complexing agents (e.g. triamines such as pentamethyl diethylenetriamine) are preferred. The resultant complex is useful for a variety of processes such as separations, catalytic reactions, substitution reactions, electrochemical reactions, etc. and as oil and fuel additives.
Abstract:
Smoke and ash deposit formation in commercial and military jet engines and power plants is minimized by inclusion in the fuel of an additive comprising oil-soluble salts of a transition metal, such as manganese or iron, and an alkaline earth metal. A preferred additive comprises methylcyclopentadienyl manganese tricarbonyl and calcium alkylphenol sulfide in amounts to provide a manganese/calcium weight ratio about 5/1. The calcium salt may be in an alkaline form derived by over-basing with calcium oxide and carbon dioxide.
Abstract:
A new process for preparing metal complexes of unsubstituted or 3,5-substituted salicylic acid and of 3- or 4-valent metals comprising reacting a corresponding salicylic acid with a soluble metal salt and an alkali alcoholate.
Abstract:
THE METHOD COMPRISES ADDING AN INHIBITOR TO A HYDROFINISHED DISTILLATE OR A HYDROFINISHED RAFFINATE FROM A DISTILLATE PRIOR TO THE TIME THAT SAID DISTILLATE OR SAID RAFFINATE IS CONTACTED WITH AIR. THE INHIBITOR IS A MEMBER SELECTED FROM THE GROUP CONSISTING OF HINDERED PHENOLS, AMINES, AND METAL COMPLEXES OF MANNICH CONDENSATION PRODUCTS FROM PHENOLS, ALDEHYDES, AND POLYAMINES. IF THE DISTILLATE HAS BEEN HYDROFINISHED IN A TWO-STAGE PROCESS UNDER RELATIVELY SEVERE CONDITIONS, AN INHIBITOR MAY BE ADDED TO THE EFFLUENT FROM THE FIRST STAGE AND AN INHIBITOR MAY BE ADDED TO THE PRODUCT FROM THE SECOND STAGE.