Abstract:
Disclosed in this specification is a method for inhibiting the formation of vertebrate SET1 family core complexes. A guanidinium-containing molecule is used to competitively inhibit the binding of the N-SET region of a SET1 protein to WDR5, thus inhibiting the formation of the SET1 family core complex. The guanidinium-containing molecule may be, for example, an arginine-containing peptide.
Abstract:
The present invention features a method for determining the methyltransferase activity of a polypeptide and screening for modulators of methyltransferase activity, more particularly for modulators of the methylation of retinoblastoma by SMYD3. The invention further provides a method or pharmaceutical composition for prevention or treating of colorectal cancer, hepatocellular carcinoma, bladder cancer and/or breast cancer using a modulator so identified. N-terminal truncated forms of SMYD3 (alias ZNFN3A1) have higher methylating activity. Lys 824 is a preferred methylation site on the RB1 protein for SMYD3.
Abstract:
The present invention provides a reconstituted complex including EED, EZH2 and SUZ12 wherein the reconstituted complex has histone methyltransferase (HMTase) activity for lysine 27 of histone H3 (H3-K27). The reconstituted complex may further include RbAp48, AEBP2 or both. Also disclosed are methods of producing the reconstituted complex, methods of identifying compounds that inhibit the HTMase activity of the reconstituted complex and methods of identifying candidate compounds for treating cancer. Reagents and kits including the reconstituted complex are further provided.
Abstract:
Provided herein are H1.0K180me2 antibodies, H1.0K180me2 proteins, and H1.0K180me2 peptides and methods of use for diagnostics and therapeutics. These H1.0K180me2 antibodies, H1.0K180me2 proteins, and H1.0K180me2 peptides may be used in the treatment of methylated H1.0-related diseases or conditions in an individual. These H1.0K180me2 antibodies, H1.0K180me2 proteins, and H1.0K180me2 peptides may also be used for the detection and quantification of a histone H1.0 protein or fragment thereof, comprising a dimethylated lysine at lysine residue 180 (H1.0K180me2); such compositions and methods are useful for detecting replicative senescence, DNA damage, genotoxic stress, radiation exposure, Alzheimer's disease, are useful for monitoring therapeutic regimens, patient stratification, drug screening, and may serve as a marker of biological aging in a system.
Abstract:
The disclosure relates to methods and compositions for reactivating a silenced FMR1 gene. In some aspects, methods described by the disclosure are useful for treating a FMR1-inactivation-associated disorder (e.g., fragile X syndrome).
Abstract:
Provided herein are fusion proteins comprising a catalytically inactive Cas9 domain and an effector domain. The fusion proteins of the present invention can be used to, for example, produce epigenetic modifications at target chromatin sites. Nucleic acids and expression vectors encoding the fusion proteins, as well as cells comprising the fusion proteins, are also provided herein.
Abstract:
A method for promoting the reprogramming of a non-cardiomyocytic cell or tissue into cardiomyocytic cell or tissue comprising is carried out by contacting a non-cardiomyocytic cell or tissue with a modulator of histone methyltransferase activity or expression.
Abstract:
The present invention provides methods and compostions to improve the efficiency of somatic cell nuclear transfer (SCNT) and the consequent production of nuclear transfer ESC (ntESC) and transgenic cells and/or non-human animals. More specifically, the present invention relates to the discovery that trimethylation of Histone H3-Lysine 9 (H3K9me3) in reprogramming resistant regions (RRRs) in the nuclear genetic material of donor somatic cells prevents efficient somatic cell nuclear reprogramming or SCNT. The present invention provide methods and compositions to decrease H3K9me3 in methods to improve efficacy of SCNT by exogenous or overexpression of the demethylase Kdm4 family and/or inhibiting methylation of H3K9me3 by inhibiting the histone methyltransferases Suv39h1 and/or Suv39h2.
Abstract:
The present invention relates to a pharmaceutical composition comprising a histone-lysine N-methyltransferase EZH2 (enhancer of zeste homolog 2) inhibitor and an enhancer of interferon-gamma receptor activity. The invention also relates to method of treating a patient having cancer, comprising administration of the pharmaceutical composition.
Abstract:
This invention relates to long non-coding RNAs (lncRNAs), libraries of those ncRNAs that bind chromatin modifiers, such as Polycomb Repressive Complex 2, inhibitory nucleic acids and methods and compositions for targeting lncRNAs.