Abstract:
Systems and methods for manufacturing a substantially impermeable concrete wall that may be used, for example, in fluid storage tanks to improve leak resistance to pressurized gases or fluids and reduce manufacturing costs.
Abstract:
Embodiments of vessels include personnel access provisions having welded or otherwise permanent connections that substantially reduce the potential for leakage into or out of the vessels by way of the personnel access provisions.
Abstract:
A method for producing a sealed and thermally insulating wall for a fluid storage tank includes attaching plural anchoring elements to a support structure; installing modular formwork elements on the support structure, the modular formwork elements having a shape that protrudes relative to the support structure and that defines, with the support structure and the plurality of anchoring parts, compartments having an open side opposite the support structure; spraying insulating foam into the compartments through the open side to form plural insulating sectors made from sprayed insulating foam; arranging insulating junction elements in a stressed position in which they are stressed between the insulating sectors and capable of expanding when the insulating sectors contract, to ensure continuity of the thermal insulation; and attaching a sealing membrane to the anchoring elements.
Abstract:
A method of maintaining pressure in an underground storage volume during transient operation is presented. Including storing a first compressible fluid, determining a safe minimum operating pressure (Pmin), and a safe maximum operating pressure (Pmax), measuring the pressure (Pact), removing or introducing the first compressible fluid, and concurrently, introducing or removing an incompressible wherein the flow rate of the incompressible fluid is controlled such that Pmin
Abstract:
Provided is a liquefied gas treatment system for a vessel, which includes a cargo tank storing liquefied natural gas (LNG), and an engine using the LNG as fuel. The liquefied gas treatment system includes: a compressor line configured to compress boil-off gas (BOG) generated in the cargo tank by a compressor and supply the compressed BOG to the engine as fuel; a high pressure pump line configured to compress the LNG stored in the cargo tank by a pump and supply the compressed LNG to the engine as fuel; and a heat exchanger configured to liquefy a part of BOG, which is compressed by the compressor, by exchanging heat with BOG that is discharged from the cargo tank and transferred to the compressor.
Abstract:
An impermeable and thermally insulated tank built into a load-bearing structure, the tank wall comprising: a thermally insulated barrier attached to a load-bearing wall and made of insulated blocks, juxtaposed in parallel rows separated from one another by gaps, an impermeable barrier supported by the thermally insulated barrier and made of welded metal sheets. Each insulated block carries, on the face of same opposite the load-bearing wall, two metal connecting strips arranged in parallel to the sides of the insulated block. The sheets of the membrane carried by the insulated block are welded to the strips. The connecting strips are rigidly connected to the insulated block carrying same. The sheets each have at least two orthogonal folds parallel to the sides of the insulated blocks, the folds being inserted into the gaps formed between two insulated blocks.
Abstract:
A system for support of a vertical cargo tank resting on an insulation layer against the hull of a vessel is arranged such that vertical forces are supported through the base of the tank. Horizontal forces are supported by support point pairs. These pairs are designed to direct applied forces generally through the middle of the shell of the tank in order not to apply bending moment to the shell of the tank. The base of the tank is flexible to generally distribute transferring forces from the tank directly to the bottom of the vessel in order not to apply bending moment to the shell of the tank or to the bottom of the vessel.
Abstract:
The present invention relates to a pressure vessel for containing or transporting pressurized gas. More particularly it relates to such vessels for containing or transporting compressed natural gas. The present invention also relates to a method of storing or transporting gas onshore or offshore. Moreover, the present invention relates to a vehicle for transporting gas, in particular compressed natural gas.
Abstract:
A container has a pair of opposing heads, and a wall section between the heads has a square cross-section and planar side walls joined together by rounded corners. The side walls tend to deflect outwardly while under pressure, but are supported externally by a support system such as the walls of a cargo hold. Another container comprises an outside tank and a flexible membrane tank inside the outside tank, an annular space being defined in between, where a first fluid is charged into the membrane tank and a second fluid is charged into the annular space in order to discharge the first fluid. In another embodiment, a long tube having a square cross-section is coiled in a support structure and made gas-tight for holding a compressed fluid, and adjacent coils and the support structure limit expansion of the tube.
Abstract:
Disclosed is a liquefied natural gas storage apparatus. The apparatus includes a heat insulated tank and liquefied natural gas contained in the tank. The tank has heat insulation sufficient to maintain liquefied natural gas therein such that most of the liquefied natural gas stays in liquid. The contained liquefied natural gas has a vapor pressure from about 0.3 bar to about 2 bar. The apparatus further includes a safety valve configured to release a part of liquefied natural gas contained in the tank when a vapor pressure of liquefied natural gas within the tank becomes higher than a cut off pressure. The cut off pressure is from about 0.3 bar to about 2 bar.