Abstract:
Disclosed herein is a system (10) for measuring light induced transmission or reflection changes, in particular due to stimulated Raman emission. The system comprises a first light source (12) for generating a first light signal having a first wavelength, a second light source (14) for generating a second light signal having a second wavelength, an optical assembly (16) for superposing said first and second light signals at a sample location (18), and a detection means (24) for detecting a transmitted or reflected light signal, in particular a stimulated Raman signal caused by a Raman-active medium when located at said sample location. Here in at least one of the first and second light sources (12, 14) is one or both of actively controllable to emit a time controlled light pattern or operated substantially in CW mode and provided with an extra cavity modulation means (64) for generating a time controlled light pattern. The detection means (24) is capable of recording said transmitted or reflected light signal, in particular stimulated Raman signal, as a function of time.
Abstract:
An apparatus and method using the apparatus for measuring target samples, particularly pharmaceutical products using Raman radiation. The sample is located in an aperture in a wall structure with a reflective surface on one or both of the sides of the wall structure facing respectively the excitation radiation transmitter or the Raman radiation detector. Preferably two reflective surfaces each in hemispherical shape and facing each other in a spherical arrangement are provided, with the wall structure across the diameter of the sphere.
Abstract:
A spectroscopic scatterometer detects both zero order and higher order radiation diffracted from an illuminated spot on a target grating. The apparatus forms and detects a spectrum of zero order (reflected) radiation, and separately forms and detects a spectrum of the higher order diffracted radiation. Each spectrum is formed using a symmetrical phase grating, so as to form and detect a symmetrical pair of spectra. The pair of spectra can be averaged to obtain a single spectrum with reduced focus sensitivity. Comparing the two spectra can yield information for improving height measurements in a subsequent lithographic step. The target grating is oriented obliquely so that the zero order and higher order radiation emanate from the spot in different planes. Two scatterometers can operate simultaneously, illuminating the target from different oblique directions. A radial transmission filter reduces sidelobes in the spot and reduces product crosstalk.
Abstract:
A spectroscopic scatterometer detects both zero order and higher order radiation diffracted from an illuminated spot on a target grating. The apparatus forms and detects a spectrum of zero order (reflected) radiation, and separately forms and detects a spectrum of the higher order diffracted radiation. Each spectrum is formed using a symmetrical phase grating, so as to form and detect a symmetrical pair of spectra. The pair of spectra can be averaged to obtain a single spectrum with reduced focus sensitivity. Comparing the two spectra can yield information for improving height measurements in a subsequent lithographic step. The target grating is oriented obliquely so that the zero order and higher order radiation emanate from the spot in different planes. Two scatterometers can operate simultaneously, illuminating the target from different oblique directions. A radial transmission filter reduces sidelobes in the spot and reduces product crosstalk.
Abstract:
The invention relates to a device (1) and a method (20) for determining a spectrum (X) of scattered radiation (S). The invention further relates to a method (70) for calculating the spectrum (X) and a method for compressing unstructured data (60) of known distribution. To be able to determine the spectrum (X) as precisely as possible and to derive from this the characteristics of materials that scatter laser pulses (P), the invention proposes that at least one characteristic of the laser pulse (P) is determined and that a spectrum analyzer (5) is used for this. Frequencies (F) of laser pulses (P) and volumes (M) of backscattered radiation (S) are combined into frequency and volume values (F′, M′) to calculate the spectrum (X). The most frequent data values are deleted from the data to compress the data (60).
Abstract:
Apparatuses and systems for analyzing light by mode interference are provided. An example of an apparatus for analyzing light by mode interference includes a number of waveguides to support in a multimode region two modes of the light of a particular polarization and a plurality of scattering objects offset from a center of at least one of the number of waveguides.
Abstract:
Contrary to conventional wisdom, which holds that light-emitting diodes (LEDs) should be cooled to increase efficiency, the LEDs disclosed herein are heated to increase efficiency. Heating an LED operating at low forward bias voltage (e.g., V
Abstract:
A flow type single-particle spectrometer includes a sample container which holds a sample liquid containing a particle to be inspected; a detection channel which is a flow path for optically detecting the particle to be inspected; a waste liquid container which stores the sample liquid flowing out through the detection channel; a liquid feed member; a white light source which emits white light; an excitation light dispersion element which spatially disperses the white light into wavelength components; an excitation light collecting element which collects light; a fluorescence light collecting element which collects fluorescence light and side scattered light; a fluorescence light dispersion element which spatially disperses the fluorescence light into wavelength components; a dispersed light collecting element which collects the fluorescence light dispersed by the fluorescence light dispersion element; and a multi-channel light detector which detects intensity of light for each wavelength.
Abstract:
A system for defect detection and photoluminescence measurement of a sample may include a radiation source configured to target radiation to the sample. The system may also include an optics assembly positioned above the sample to receive a sample radiation. The system may also include a filter module configured to receive the sample radiation collected by the optics assembly. The filter module may separate the sample radiation collected by the optics assembly into a first radiation portion and a second radiation portion. The system may also include a defect detection module configured to receive the first radiation portion from the filter module. The system may further include a photoluminescence measurement module configured to receive the second radiation portion from the filter module. The defect detection module and the photoluminescence measurement module may be configured to receive the respective first radiation portion and the second radiation portion substantially simultaneously.