Abstract:
A halogen-free resin composition and a method for preparation of copper clad laminate with the same, wherein based on total parts by weight of solid components, the halogen-free resin composition comprises a reactive allyl phenoxy cyclotriphosphazene or vinyl phenoxy cyclotriphosphazene of 5-50 parts, a thermosetting resin of 15-85 parts, a crosslinking curing agent of 1-35 parts, a crosslinking curing accelerant of 0-5 parts and a filler of 0-100 parts. In the present invention, the reactive allyl phenoxy cyclotriphosphazene or vinyl phenoxy cyclotriphosphazene having very low water absorption is introduced into the thermosetting resin, satisfying both the halogen-free and antiflaming requirements and improving the electrical properties of the system, and making it possible to prepare the halogen-free high-frequency high-speed substrate material. The resulted copper clad laminate satisfies the halogen-free requirement, and has advantages such as excellent resistance to heat and moisture, and low dielectric loss.
Abstract:
Disclosed is an aqueous metallic coating composition which significantly reduces the production of hydrogen gas and does not have the problems which are brought about from hydrophobic segments. The composition can be stored for a long period of time and provide a metallic coating having good appearance and film properties (e.g. water resistance and adhesive properties with substrates). The aqueous coating composition of the present invention comprises(a) an acryl resin having a number average molecular weight of 1,000 to 50,000, an acid value of 15 to 200 and a hydroxyl value of 20 to 200, prepared by copolymerizing an ethylenic monomer and a phosphate monomer represented by ##STR1## [wherein X represents a hydrogen atom or a methyl group, Y represents an alkylene group having 2 to 4 carbon atoms and n is an integer of 3 to 30.] and(b) a pigment;the acryl resin being present in an amount of 2 to 500 parts by weight, based on 100 parts by weight of the pigment.
Abstract:
The invention is (hydroxy)-phosphinylalkyl acrylate, (hydroxy)-phosphinylalkyl methacrylate or an alkali metal, alkaline earth metal or ammonium salt thereof.In another aspect, the invention is a polymeric composition which comprises the reaction product of:(a) between about 0.5 and 100 percent by weight of a (hydroxy)-phosphinylalkyl acrylate, (hydroxy)-phosphinylalkyl methacrylate or an alkali metal, alkaline earth metal or ammonium salt thereof; and(b) between about 0 and 99.5 weight percent of a compound containing a polymerizable 1,2-ethylenically unsaturated moiety.
Abstract:
Provided herein are coated substrates. Also provided herein are methods for attaching phosphonates, phosphonic acids, or derivatives thereof to an organic or an inorganic substrate (e.g., a metal oxide substrate) via phosphonate chemistry to form the coated substrates provided herein.
Abstract:
A two-component polyurethane composition comprising: an aqueous dispersion comprising an emulsion polymer and a specific sulphate and/or sulfonate surfactant, and a water-dispersible polyisocyanate; the emulsion polymer with a weight average molecular weight of 70,000 g/mol or less comprising, by weight based on the weight of the emulsion polymer, greater than 0.25% of structural units of a phosphorous-containing acid monomer and/or salts thereof, greater than 15% of structural units of a hydroxy-functional alkyl (meth)acrylate, structural units of an monoethylenically unsaturated nonionic monomer, and from zero to 10% of structural units of an additional acid monomer and/or salts thereof; and a process of preparing the two-component polyurethane composition.
Abstract:
Described herein is a method for treatment of at least one surface of a metal containing substrate including contacting the surface with an aqueous acidic Ni-free composition (A) including at least zinc cations, manganese cations, and phosphate anions to form a conversion coating on the surface, and contacting the formed coating with an aqueous Ni-free composition (B) including one or more linear polymers (P) containing vinyl phosphonic acid and (meth)acrylic acid in form of their polymerized monomeric units. Also described herein is a composition (B) as such, a master batch to produce the composition (B), a kit-of-parts including both compositions (A) and (B), a kit-of-parts including respective master batches to produce both compositions (A) and (B), and a coated substrate obtainable by the method described herein.
Abstract:
A biocompatible copolymer includes a phosphorylcholine-containing structural unit represented by formula (I), a siloxy-containing structural unit represented by formula (II), and a photoreactive structural unit represented by formula (III), wherein each of the substituents is given the definition as set forth in the Specification and Claims. A curable composition, a biocompatible coating layer, and a biocompatible device containing the biocompatible copolymer are also disclosed.
Abstract:
A coating agent for preventing the adsorption of extracellular vesicles represented by exosomes to a tool has been developed. Adsorption of extracellular vesicles to a tool can be prevented by using a coating agent which contains a hydrophilic polymer having a weight average molecular weight of 10,000 or more and 1,000,000 or less, wherein a coated layer formed by the coating agent has a contact angle of 0 degree or more and 30 degrees or less.
Abstract:
The present invention relates to a fluorescent quantum dot-containing electronic device including a protective sheet. The protective sheet includes a multilayer structure (W) including a base (X) and a layer (Y) stacked on the base (X), the layer (Y) contains a reaction product (D) of an aluminum-containing compound (A) and a phosphorus compound (B), and the reaction product (D) has an average particle diameter of 5 to 50 nm.
Abstract:
A halogen-free flame retardant adhesive comprises an acrylic copolymer preparable by polymerization of monomers comprising a first monomer which comprises a low glass transition temperature (Tg) monomer, a second monomer which comprises a high Tg monomer, wherein at least one of the first and second monomers comprises a (meth)acrylate, and a phosphinate containing monomer.