Abstract:
Provided is a regeneration rotary kiln capable of reducing the proportion of combustible gas in waste gas and capable of reducing cost for generating superheated steam.A regeneration rotary kiln (1) is characterized by including: a superheated steam generation unit (2) that generates superheated steam; a tube (3) capable of rotating about its axis and having a heating section (A) where, while the superheated steam is being supplied thereto, carbon fiber reinforced plastic (10) containing a matrix resin and carbon fibers is heated to generate combustible gas (10G) from the matrix resin to extract the carbon fibers (10S) from the carbon fiber reinforced plastic (10); a first combustion chamber (43a) that is placed outside the tube (3) and that burns the gas (10G) introduced from the heating section (A) to heat the heating section (A); and a second combustion chamber (43b) that burns the gas (10G) introduced from the first combustion chamber (43a) to supply heat for generating the superheated steam.
Abstract:
An apparatus for processing fly ash comprising a heated refractory-lined vessel having a series of spaced angled rows of swirl-inducing nozzles which cause cyclonic and/or turbulent air flow of the fly ash when introduced in the vessel, thus increasing the residence time of airborne particles. Also disclosed is a method of fly ash beneficiation using the apparatus.
Abstract:
This invention relates to methods of recycling catalyst in oxidations of hydrocarbons, such as cyclohexane for example, to respective intermediate oxidation products, such as adipic acid for example, by a direct process. The catalyst remains in solution despite removal of water from the composition, since the water removal is controlled at such temperatures and such remaining water levels that prevent catalyst from precipitating. The water removal is preferably conducted before removal of the intermediate oxidation product. Also, preferably, some, and more preferably all steps of the process are conducted in a single liquid phase region.
Abstract:
This invention relates to methods and reactor devices for controlling the oxidation of hydrocarbons to dibasic acids, in the presence of a catalyst and a monobasic acid, by removing the catalyst from the reaction mixture, outside the oxidation zone, after the oxidation has taken place at least partially. Initially, the catalyst is partially precipitated and removed by reducing the water level in the reaction mixture and/or subjecting the reaction mixture to a temperature, at which or over which catalyst precipitates. After the initial partial precipitation of the catalyst, the mother liquor remaining is subjected to a thermal treatment during which at least the major part of the monobasic acid is removed leaving behind molten dibasic acids, in which the remaining catalyst precipitates substantially in its totality, and it is removed. The precipitated catalyst in the two precipitation stages may be recycled in miscellaneous ways. From the foregoing it will be appreciated that, although specific embodiments of the invention have been described herein for purposes of illustration, various modifications may be made without deviating from the spirit and scope of the invention. Accordingly, the invention is not limited except as by the appended claims.
Abstract:
Densified textile aggregates are co-fed with a fuel into a partial oxidation gasifier. High solids concentrations in the feedstock composition can be obtained without significant impact on the feedstock composition stability and pumpability. A consistent quality of densified textile derived syngas can be continuously produced, including generation of carbon dioxide and a carbon monoxide/hydrogen ratio while stably operating the gasifier and avoiding the high tar generation of fluidized bed or fixed bed waste gasifiers and without impacting the operations of the gasifier. The densified textile derived syngas quality, composition, and throughput are suitable for produce a wide range of chemicals and polymers, including methanol, acetic acid, methyl acetate, acetic anhydride, and cellulose esters through a variety of reaction schemes in which at least a portion of the chemical or polymer originates with densified textile derived syngas.
Abstract:
The present invention is directed to a method and a system for the production of at least one polymeric yarn comprising means for mixing a polymer (1) with a first solvent yielding a mixture; means for homogenizing the mixture; means for rendering the mixture inert (21, 22, 23); means for dipping the mixture into a quenching bath (30), wherein an air gap is maintained before the mixture reaches the quenching bath (30) liquid surface forming at least one polymeric yarn; means for drawing (41) the at least one polymeric yarn at least once; means for washing (5) the at least one polymeric yarn with a second solvent that is more volatile than the first solvent; means for heating the at least one polymeric yarn (6); means for drawing at room temperature (7) the at least one polymeric yarn at least once; and means for heat drawing (8) the at least one polymeric yarn at least once. The instant invention also concerns a system and method of dosing a polymer mixture with a first solvent into an extruder (26), a device (5), a system and a method of solvent extraction from at least one polymeric yarn, and a method and system of mechanical pre-recovery (4) of at least one liquid in at least one polymeric yarn.
Abstract:
A continuous wire drive system for a needleless electrospinning apparatus, the electrospinning apparatus including an electrospinning enclosure and within which a nanoscale or submicron scale polymer fiber web is formed onto a substrate from a liquid polymer layer coated onto a plurality of continuous electrode wires passing through the electrospinning enclosure. The continuous wire drive system includes a master wire drive drum and a slave wire drive drum, each of the master wire drive drum and slave wire drive drum including a plurality of wire guides, each of the wire guides including a channel or groove for receiving one of the plurality of continuous electrode wires. The continuous wire drive system is external to the electrospinning apparatus, and the continuous wire drive system drives the plurality of continuous electrode wires through the electrospinning enclosure.
Abstract:
The present disclosure provides systems and methods for producing a volume of substantially all armchair nanotubes of a preselected chirality for fabricating yarn consisting of substantially all metallic conducting armchair tubes. The systems and methods can be used for the synthesis of (10,10), (11,11), and (12,12) metallic armchair carbon nanotubes and potentially other chiralities. The elements of the present disclosure include: (i) a carbon source that provides substantial numbers of ethylene and acetylene radicals in combination with a high population of ethylene groups and a small amount of methane, (ii) a hydrogen to carbon ratio sufficient to “passivate” all other chiral growth sites to a higher degree than armchair growth sites, and (iii) a CVD process that can be tuned to create a well-controlled population of catalyst with tight diameter distribution with sparse modal distribution that falls within a range of the desired single wall diameters.
Abstract:
The present invention provides a fabricating method for natural cellulose fiber blended with nano silver.The fabricating method comprises following steps: Firstly, prepare nano silver colloidal sol by reduction titration for mixture of polyvinyl alcohol (PVA), silver nitrate (AgNO3) and sodium borohydride (NaBH4). Secondly, prepare mixing cellulose serum by blending agitation for mixture of wood pulp, N-methylmorpholine N-oxide (NMMO) and stabilizer. Thirdly, produce spinning dope by blending and dehydrating the nano silver colloidal sol and mixing cellulose serum. Fourthly, produce fibrous tow by Dry-Jet Wet Spinning method in association with coagulation, regeneration in coagulation bath, and water rinse. Finally, obtain final product of natural cellulose fiber blended with nano silver by post treatments of dry, oil and coil in proper order.
Abstract:
The present invention provides a fabricating method for natural cellulose fiber blended with nano silver.The fabricating method comprises following steps: Firstly, prepare nano silver colloidal sol by reduction titration for mixture of polyvinyl alcohol (PVA), silver nitrate (AgNO3) and sodium borohydride (NaBH4). Secondly, prepare mixing cellulose serum by blending agitation for mixture of wood pulp, N-methylmorpholine N-oxide (NMMO) and stabilizer. Thirdly, produce spinning dope by blending and dehydrating the nano silver colloidal sol and mixing cellulose serum. Fourthly, produce fibrous tow by Dry-Jet Wet Spinning method in association with coagulation, regeneration in coagulation bath, and water rinse. Finally, obtain final product of natural cellulose fiber blended with nano silver by post treatments of dry, oil and coil in proper order.