摘要:
Systems and methods are provided for converting alkane while generating improved yields of desirable aromatics and/or improved selectivity for forming desired aromatics, such as para-xylene (p-xylene). Aromatics generated during the aromatic formation process can be alkylated to form xylenes with improved yield and/or improved selectivity.
摘要:
Disclosed are a catalyst system and its use in a process for the conversion of a feedstock containing C8+ aromatic hydrocarbons to produce light aromatic products, comprising benzene, toluene and xylene. The catalyst system comprises (a) a first catalyst bed comprising a first catalyst composition, said first catalyst composition comprising a zeolite having a constraint index of 3 to 12 combined (i) optionally with at least one first metal of Group 10 of the IUPAC Periodic Table, and (ii) optionally with at least one second metal of Group 11 to 15 of the IUPAC Periodic Table; and (b) a second catalyst bed comprising a second catalyst composition, said second catalyst composition comprising (i) a meso-mordenite zeolite, combined (ii) optionally with at least one first metal of Group 10 of the IUPAC Periodic Table, and (iii) optionally with at least one second metal of Group 11 to 15 of the IUPAC Periodic Table, wherein said meso-mordenite zeolite is synthesized from TEA or MTEA and having a mesopore surface area of greater than 30 m2/g and said meso-mordenite zeolite comprises agglomerates composed of primary crystallites, wherein said primary crystallites have an average primary crystal size as measured by TEM of less than 80 nm and an aspect ratio of less than 2.
摘要:
Aromatic compositions useful in various applications, such as aromatic fluid solvents and high temperature heat transfer fluids, are provided herein. Also provided are advantageous methods for obtaining the aromatic compositions, utilizing hydroalkylation of precursor aromatic hydrocarbons such as benzene, toluene, xylene, and the like. Particularly preferred aromatic compositions include one or more of cycloalkylaromatic, dicycloalkylaromatic, biphenyl, terphenyl, and diphenyl oxide compounds. The aromatic compositions may be blended with an aromatic solvent or other aromatic fluid comprising one or more of alkylnaphthalenes, alkylbenzenes, and naphthalene, e.g., to form a useful aromatic fluid solvent, or the aromatic compositions may be utilized as high temperature heat transfer fluids (with or without additional blend components).
摘要:
Disclosed are catalyst compositions and their use in a process for the conversion of a feedstock containing C8+ aromatic hydrocarbons to produce light aromatic products, comprising benzene, toluene and xylene. The catalyst composition comprises a zeolite which comprises a MOR framework structure and a MFI and/or MEL framework structure, (b) at least one first metal of Group 10 of the IUPAC Periodic Table, and (c) optionally at least one second metal of Group 11 to 15 of the IUPAC Periodic Table. In one or more embodiments, the MOR framework structure comprises mordenite, preferably a mordenite zeolite having small particle size. The MFI framework structure preferably comprises ZSM-5, and the MEL framework structure preferably comprises ZSM-11.
摘要:
The present invention provides a mordenite zeolite having a mesopore surface area of greater than 30 m2/g and an average primary crystal size as measured by TEM of less than 80 nm, and methods of making the mordenite zeolite.
摘要:
Apparatuses and processes are provided for regulating C7 and C8 feed to an aromatics complex to increase the ratio of a selected xylene isomer to benzene ratio. Reformate may be split into three cuts in a splitter column. A side cut stream comprises predominantly C7 hydrocarbons and a bottoms steam from the splitter column comprises predominantly C8+ hydrocarbons. The relative proportion of the C7 and C8+ hydrocarbon streams sent to the aromatics complex are metered to determine the resulting ratio of a selected xylene isomer to benzene produced by the aromatics complex.
摘要:
A method of producing a purified mixed xylene comprising: introducing toluene and methanol to an alkylation reactor (32); reacting the toluene and the methanol in the alkylation reactor (32) to form a hydrocarbon stream (22) comprising a first mixed xylene, wherein the alkylation reactor (32) comprises an alkylation catalyst; separating the hydrocarbon stream (22) into a toluene stream (24) and a separated C8+ stream (14); introducing the toluene stream (24) to a transalkylation reactor (38) with a transalkylation catalyst to produce a transalkylated stream (17) comprising a second mixed xylene; adding the transalkylated stream (17) to the hydrocarbon stream (22); and separating a C8 product stream (19) comprising the purified mixed xylene from the separated C8+ stream (14).
摘要:
In a process for producing para-xylene, at least one feed comprising C6+ aromatic hydrocarbons is supplied to a dividing wall distillation column to separate the feed into a C7− aromatic hydrocarbon-containing stream, a C8 aromatic hydrocarbon-containing stream and a C9+ aromatic hydrocarbon-containing stream. At least part of the C8 aromatic hydrocarbon-containing stream is then supplied to a para-xylene recovery unit to recover para-xylene from the C8 aromatic hydrocarbon-containing stream and produce a para-xylene depleted stream. The para-xylene depleted stream is contacted with a xylene isomerization catalyst in a xylene isomerization zone under conditions effective to isomerize xylenes in the para-xylene depleted stream and produce an isomerized stream, which is then at least partially recycled to the para-xylene recovery unit.
摘要:
The present invention relates to a process for producing benzene comprising the steps of: a) separating a source feedstream comprising C5-C12 hydrocarbons including benzene and alkylbenzenes into a first feedstream comprising a higher proportion of benzene than the source feedstream and a second feedstream comprising a lower proportion of benzene than the source feedstream and subsequently, b) contacting the first feedstream in the presence of hydrogen with a first hydrocracking catalyst comprising 0.01-1 wt-% hydrogenation metal in relation to the total catalyst weight and a zeolite having a pore size of 5-8 Å and a silica (SiO2) to alumina (Al2O3) molar ratio of 5-200 under first process conditions to produce a first product stream comprising benzene, wherein the first process conditions include a temperature of 425-580° C., a pressure of 300-5000 kPa gauge and a Weight Hourly Space Velocity of 0.1-15 h−1, and c) contacting the second feedstream with hydrogen under second process conditions to produce a second product stream comprising benzene, wherein i) the second process conditions are suitable for hydrocracking and step (c) involves contacting the second feedstream in the presence of hydrogen with a second hydrocracking catalyst comprising 0.01-1 wt-% hydrogenation metal in relation to the total catalyst weight and a zeolite having a pore size of 5-8 Å and a silica (SiO2) to alumina (Al2O3) molar ratio of 5-200 under the second process conditions which include a temperature of 300-600° C., a pressure of 300-5000 kPa gauge and a Weight Hourly space Velocity of 0.1-15 h−1, ii) the second process conditions are suitable for toluene disproportionation and involve contracting the second feedstream with a toluene disproportionation catalyst, or iii) the second process conditions are suitable for hydrodealkylation.
摘要:
This invention is for a catalyst for conversion of hydrocarbons. The catalyst is a non-acidic germanium zeolite, such as Ge-ZSM-5, on which at least two metals, platinum and at least one other metal selected from Group 7, Group 8, Group 9, Group 10 and tin, are deposited on the germanium zeolite. Examples of the other metal are iridium, rhenium, palladium, ruthenium, rhodium, iron, cobalt and tin. The catalyst is prepared by synthesizing a germanium zeolite; depositing platinum and at least one other metal on the germanium zeolite; and calcining after preparation of the zeolite, before depositing the metals or after depositing the metals. The catalyst may be used in a process for the conversion of hydrocarbons, such as propane to aromatics, by contacting the catalyst with a hydrocarbon stream containing alkanes, olefins and mixtures thereof having 2 to 12 carbon atoms per molecule and recovering the product.