Abstract:
A white-light emitting lighting device comprising one or more light emitting light sources (preferably solid state semiconductor light emitting diodes) that emit off-white light during operation, wherein the off-white light includes a spectral output including at least one spectral component in a first spectral region from about 360 nm to about 475 nm, at least one spectral component in a second spectral region from about 475 nm to about 575 nm, and at least one deficiency in at least one other spectral region, and an optical component that is positioned to receive at least a portion of the off-white light generated by the one or more light sources, the optical component comprising an optical material for converting at least a portion of the off-white light to one or more predetermined wavelengths, at least one of which has a wavelength in at least one deficient spectral region, such that light emitted by the lighting device comprises white light, wherein the optical material comprises quantum confined semiconductor nanoparticles. Also disclosed is an optical component, lighting fixture, a cover plate for a lighting fixture, and methods.
Abstract:
A particle comprising nanoparticles encapsulated within a host material is disclosed, wherein the particle includes a coating disposed over at least a portion of the outer surface of the particle. In certain embodiments, nanoparticles have light-emissive properties. In certain embodiments, the coating covers all or substantially all of the outer surface of the particle. The coating can comprise a resin having low oxygen permeability. In certain embodiments, the coating comprises a polyvinyl alcohol compound. In certain embodiments, the coating comprises a polyvinylidene dichloride compound. Other embodiments relate to a powder comprising a particle of the invention, a composition including a particle of the invention, a formulation including a particle of the invention, a coating comprising a particle of the invention, a method for making a particle of the invention, and products and applications including a particle of the invention. In preferred embodiments, a nanoparticle comprises a semiconductor nanocrystal.
Abstract:
A component including a substrate, at least one layer including a color conversion material comprising quantum dots disposed over the substrate, and a layer comprising a conductive material (e.g., indium-tin-oxide) disposed over the at least one layer. (Embodiments of such component are also referred to herein as a QD light-enhancement substrate (QD-LES).) In certain preferred embodiments, the substrate is transparent to light, for example, visible light, ultraviolet light, and/or infrared radiation. In certain embodiments, the substrate is flexible. In certain embodiments, the substrate includes an outcoupling element (e.g., a microlens array). A film including a color conversion material comprising quantum dots and a conductive material is also provided. In certain embodiments, a component includes a film described herein. Lighting devices are also provided. In certain embodiments, a lighting device includes a film described herein. In certain embodiments, a lighting device includes a component described herein.
Abstract:
A lighting system is disclosed. The lighting system comprises at least one light source comprising a light emitting diode (LED) and one or more phosphors optically coupled to the LED to convert at least a portion of original light emitted by the LED to provide a modified LED light having a first predetermined spectral output, and an optical material that is optically coupled to at least a portion of a surface of a light guide plate and optically coupled to receive at least a portion of the modified LED light and to convert at least a portion of the modified LED light to at least one predetermined wavelength to provide modified light having a second predetermined spectral output, wherein the optical material comprises one or more types of quantum confined semiconductor nanoparticle. A device including a lighting system is also disclosed.
Abstract:
A solid state lighting device including a light source capable of emitting white light including a blue spectral component and having a deficiency in a spectral region, and an optical component that is positioned to receive at least a portion of the light generated by the light source, the optical component comprising an optical material for converting at least a portion of the blue spectral component of the light to one or more predetermined wavelengths such that light emitted by the solid state lighting device includes light emission from the light source supplemented with light emission at one or more predetermined wavelengths, wherein the optical material comprises quantum confined semiconductor nanoparticles. Also disclosed is lighting fixture, a cover plate for a lighting fixture and a method.
Abstract:
A coated quantum dot and methods of making coated quantum dots are provided. Products including quantum dots described herein are also disclosed.
Abstract:
A semiconductor nanocrystal capable of emitting blue light upon excitation. Also disclosed are devices, populations of semiconductor nanocrystals, and compositions including a semiconductor nanocrystal capable of emitting blue light upon excitation. In one embodiment, a semiconductor nanocrystal capable of emitting blue light including a maximum peak emission at a wavelength not greater than about 470 nm with a photoluminescence quantum efficiency greater than about 65% upon excitation. In another embodiment, a semiconductor nanocrystal includes a core comprising a first semiconductor material comprising at least three chemical elements and a shell disposed over at least a portion of the core, the shell comprising a second semiconductor material, wherein the semiconductor nanocrystal is capable of emitting blue light with a photoluminescence quantum efficiency greater than about 65% upon excitation. In a further embodiment, a semiconductor nanocrystal includes a core comprising a first semiconductor material comprising at least three chemical elements and a shell disposed over at least a portion of the core, the shell comprising a second semiconductor material comprising at least three chemical elements, wherein the semiconductor nanocrystal is capable of emitting light including a maximum peak emission in the blue region of the spectrum upon excitation.
Abstract:
An ink composition comprising a nanomaterial and a liquid vehicle, wherein the liquid vehicle comprises a composition including one or more functional groups that are capable of being cross-linked is disclosed. An ink composition comprising a nanomaterial, a liquid vehicle, and scatterers is also disclosed. An ink composition comprising a nanomaterial and a liquid vehicle, wherein the liquid vehicle comprises a perfluorocompound is further disclosed. A method for inkjet printing an ink including nanomaterial and a liquid vehicle with a surface tension that is not greater than about 25 dyne/cm is disclosed. In certain preferred embodiments, the nanomaterial comprises semiconductor nanocrystals. Devices prepared from inks and methods of the invention are also described.
Abstract:
A composition comprising a semiconductor nanocrystal including a core comprising a first semiconductor material comprising at least three chemical elements and a shell disposed over at least a portion of the core, the shell comprising a second semiconductor material, wherein the semiconductor nanocrystal is capable of emitting light upon excitation with a photoluminescence quantum efficiency greater than about 65%. Also disclosed is a composition comprising a semiconductor nanocrystal including a core comprising a first semiconductor material comprising at least three chemical elements and a shell disposed over at least a portion of the core, the shell comprising a second semiconductor material comprising at least three chemical elements, wherein the semiconductor nanocrystal is capable of emitting light with a photoluminescence quantum efficiency greater than about 60% upon excitation.
Abstract:
A component including a substrate, at least one layer including a color conversion material including quantum dots disposed over the substrate, and a layer including a conductive material (e.g., indium-tin-oxide) disposed over the at least one layer. (Embodiments of such component are also referred to herein as a QD light-enhancement substrate (QD-LES).) In certain preferred embodiments, the substrate is transparent to light, for example, visible light, ultraviolet light, and/or infrared radiation. In certain embodiments, the substrate is flexible. In certain embodiments, the substrate includes an outcoupling element (e.g., a microlens array). A film including a color conversion material including quantum dots and a conductive material is also provided. In certain embodiments, a component includes a film described herein. Lighting devices are also provided. In certain embodiments, a lighting device includes a film described herein. In certain embodiments, a lighting device includes a component described herein.